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1   This chapter was the result of the efforts of several people. Dr. Shaw-pin Miaou of College Station, TX 

designed the MCMC algorithm for the Poisson-Gamma model.  Dr. Byung-Jung Park modified the 
algorithm to incorporate Poisson-Lognormal and  the MCMC binomial model.  Dr. Srinivas Geeidpally 
added the MCMC Normal model.  Dr. Dominique Lord provided technical consulting on the dispersion 
parameters in these models. Dr. Ned Levine developed the block sampling scheme and provided overall 
project management.  Ms. Haiyan Teng and Dr. Li Sheng programmed the routines and added numerous 
technical improvements to the algorithms. 
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Chapter 17: 
Estimating Complex Models with  

Markov Chain Monte Carlo Simulation 

 
In this chapter, we examine the Markov Chain Monte Carlo (MCMC) method for 

estimating complex models.  We apply it to the family of Poisson models for modeling count 
data. 

 
Markov Chain Monte Carlo (MCMC) Simulation of Regression Functions 
 

To estimate a regression model from a complex function, we use a simulation approach 
called Markov Chain Monte Carlo (or MCMC).  Chapter 12 of the CrimeStat manual discussed 
the Correlated Walk Analysis (CWA) routines.  This was an example of a random walk whereby 
each step follows from the previous step.  That is, a new position is defined only with respect to 
the previous position.  This is an example of a Markov Chain.   

 
 In recent years, there have been numerous attempts to utilize this methodology for 

simulating regression and other models using a Bayesian approach (Lynch, 2007; Gelman, 
Carlin, Stern, & Rubin, 2004; Lee, 2004; Denison, Holmes, Mallick & Smith, 2002; Carlin & 
Louis, 2000; Leonard & Hsu, 1999).  

 
Hill Climbing Analogy 

 
 To understand the MCMC approach, let us use a ‘hill climbing’ analogy.   Imagine a 
mountain climber who wants to climb the highest mountain in a mountain range (for example, 
Mt. Everest in the Himalaya mountain range).  However, suppose a cloud cover has descended 
on the range such that the tops of mountains cannot be seen; in fact, assume that only the bases 
of the mountains can be seen.  Without a map, how does the climber find the mountain with the 
highest peak and then climb it?  Realistically, of course, no climber is going to try to climb 
without a map and, certainly, without good visibility.  But, for the sake of the exercise, think of 
how this could be done. 
 
 First, the climber could adopt a gradient approach with a systematic walking pattern.  For 
example, he/she takes a step.  If the step is higher than the current elevation (i.e., it is uphill), the 
climber then accepts the new position and moves to it.  On the other hand, if the step is at the 
same or a lower elevation as the current elevation, the step is rejected. After each iteration 
(accepting or rejecting the new step), the procedure continues.  Such a procedure is sometimes 
called a greedy algorithm because it optimizes the decision in incremental steps (local 
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optimization; Wikipedia, 2010a; Cormen, Leiserson, Rivest, & Stein; 2009; So, Ye, & Zhang, 
2007; Dijkstra, 1959). 
 
 This strategy can be useful if there is a single mountain to climb (i.e., it is convex 
throughout or at least in the vicinity of the highest peak).  Because generally moving uphill 
means moving towards the peak of the mountain, this approach will often lead the climber to get 
to the peak if the mountain is smooth.  For a single mountain, a greedy algorithm such as our hill 
climbing example often works fine.  The Maximum Likelihood Estimation (MLE) method is 
similar to this in that it requires a smooth convex function for which each step upward is 
assumed to be climbing the mountain.  For functions that are smooth and convex, such as the 
single-parameter exponential family, this algorithm will work very well.  The algorithm goes 
under different names but a common one is the method of steepest ascent (Goldfield, Quandt, & 
Trotter, 1966). 
 
 But, if there are multiple mountains (i.e., a range of mountains), how can we be sure that 
the peak that is climbed is really that of the highest mountain?  In other words, again, without a 
map, for a range of mountains where there are multiple peaks but with only one being the 
highest, there is no guarantee that this greedy algorithm will find the single highest peak.  Greedy 
algorithms work for simple problems but not necessarily for complex ones.  Because they 
optimize the local decision process, they will not necessarily see the best approach for the whole 
problem - the global decision process (Goldfield, Quandt, & Trotter, 1966).   
 
 In other words, there are two problems that the climber faces.  First, he/she does not 
know where to start.  For this a ‘map’ would be ideal.  Second, the search strategy of always 
choosing the step that goes up does not allow the climber to find alternative routes.  Hills or 
mountains, as we all know, are rarely perfectly smooth; there are crevices and ridges and 
undulations in the gradient so that a climber will not always be going up in scaling a mountain.  
Instead, a climber needs to search a larger area in order to find a path that really does go up to the 
peak (sampling, if you wish).   
 
 This is the main reason why the MLE approach cannot estimate the parameters of a 
complex function since the approach works only for functions that are part of the single-
parameter exponential family; they are closed-form functions for which there is a simple maxima 
that can be estimated.  For these functions, which are very common, the MLE is a good 
approach.  These functions are perfectly smooth which will allow a greedy algorithm to work.  
All of the generalized linear model functions – Ordinary Least Squares (OLS), Poisson, negative 
binomial, binomial probit, and others, can be solved with the MLE approach. 
 

However, for a two or higher-parameter family, the approach will not work because there 
may be multiple peaks and a simple optimization approach will not necessarily discover the 
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highest likelihood.  In fact, for a complex surface, MLE may get stuck on a local peak (a local 
optimum) and not have a way to backtrack in order to find another peak which is truly the 
highest.   
 

For these, one needs a map for a good starting location and a sampling strategy that 
allows the exploration of a larger area than just that defined by a greedy algorithm. The ‘map’ 
comes from a Bayesian approach to the problem and the alternative search strategy comes from a 
sampling approach. This is essentially the logic behind the MCMC method. 
 

Bayesian Probability 
  

Let us start with the ‘map’ and briefly review the information that was discussed in 
Chapter 14.  Bayes Theorem is a formulation that relates the conditional and marginal 
probability distributions of random variables.  The marginal probability distribution is a 
probability independent of any other conditions.  Hence, P(A) and P(B) is the marginal 
probability (or just plain probability) of A and B respectively.   
 
 The conditional probability is the probability of an event given that some other event has 
occurred. It is written in the form of P(A|B) (i.e., event A given that event B has occurred).  In 
probability theory, it is defined as: 
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where the symbol   represents the logical concept of ‘and’ (the Boolean intersection of A and 
B), which we expressed in words in Chapter 14. We will use the mathematical symbol now. 
 

Bayes Theorem relates the two equivalents of the ‘and’ condition together. 
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Bayesian Inference   
 
 In the statistical interpretation of Bayes Theorem, the probabilities are estimates of a 
random variable.  Let θ be a parameter of interest and let X be some data.  Thus, Bayes Theorem 
can be expressed as: 
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 Interpreting this equation, )|( XP   is the probability of   given the data, X . )(P  is 

the probability that   has a certain distribution and is usually called the prior probability.  
)|( XP  is the probability that the data would be obtained given that θ is true and is usually 

called the likelihood function (i.e., it is the likelihood that the data will be obtained given  .  
Finally, )( XP  is the marginal probability of the data, the probability of obtaining the data under 

all possible scenarios of ’s. 
 

The data are what was obtained from some data gathering exercise (either from 
experiments or observations).  Since the prior probability of obtaining the data (the denominator 
of the above equation) is not known or cannot easily be evaluated, it is not easy to estimate it. 
Consequently, often the numerator only is used for estimating the posterior probability since 
 
 )()|()|(  PXPXP                       (17.7) 

 
where   means ‘proportional to’.  Because probabilities must sum to 1.0, the final result can be 
re-scaled so that the probabilities of all entities do sum to 1.0.  The prior probability, )(P , 

essentially is the ‘map’ in the hill climbing analogy discussed above!  It points the way towards 
the correct solution. 
 
 The key point behind this logic is that an estimate of a parameter can be updated by 
additional information.  The formula requires that a prior value for the estimate be given with 
new information being added that is conditional on the prior estimate, meaning that it factors in 
information from the prior.  Bayesian approaches are increasingly being used to provide 
estimates for complex calculations that previously were intractable (Denison, Holmes, Mallilck, 
& Smith, 2002; Lee, 2004; Gelman, Carlin, Stern, & Rubin, 2004). 
 
 Markov Chain Sequences 
 

Now, let us look at an alternative search strategy, the MCMC strategy. Unlike a 
conventional random number generator that generates independent samples from the distribution 
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of a random variable, the MCMC technique simulates a Markov chain with a limiting 
distribution equal to a specified target distribution. In other words, a Markov chain is a sequence 
of samples generated from a random variable in which the probability of occurrence of each 
sample depends only on the previous one.  More specifically, a conventional random number 
generator draws a sample of size N and stops.  It is non-iterative and there is no notion of the 
generator converging.  We simply require N to be sufficiently large to produce reliable statistics.  

 
An MCMC algorithm, on the other hand, is iterative with the generation of the next 

sample dependent on the value of the current sample.  The algorithm requires us to sample until 
convergence has been obtained.  The initial values of an MCMC algorithm are usually chosen 
arbitrarily and samples generated from one iteration to the next are correlated (autocorrelation).  
Consequently, the question of when we can safely accept the output from the algorithm as 
coming from the target distribution gets complicated and is an important topic in MCMC 
(convergence monitoring and diagnosis).   

 
The MCMC algorithm involves five conceptual steps for estimating the parameter: 
 

1. The user specifies a functional model and sets up the model parameters. 
 

2. A likelihood function is set up and prior distributions for each parameter are assumed. 
 

3. A joint posterior distribution for all unknown parameters is defined by multiplying the 
likelihood and the priors as in equation 17.7.   
 

4. Repeated samples are drawn from this joint posterior distribution. However, it is difficult 
to directly sample from the joint distribution since the joint distribution is usually multi-
dimensional. The parameters are, instead, sampled sequentially from their full conditional 
distributions, one at a time holding all existing parameters constant. This is the Markov 
Chain part of the MCMC algorithm.  Typically, because it takes the chain a while to 
reach an equilibrium state, the early samples are thrown out (‘burn-in’) and the results are 
summarized based on the M-L samples where M is the total number of iterations and L 
are the discarded (‘burn-in’) samples (Miaou, 2006). 
 

5. The estimates for all coefficients are based on the results of the M-L samples, for example 
the mean, the standard deviation, the median and various percentiles.  Similarly, the 
overall model fit is based on the M-L samples. 
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MCMC Simulation 
 

 Each of these conceptual steps is complex, of course, and involves some detail.  The 
following represents a brief discussion of the steps. In Appendix C, Dominique Lord and Byung-
Jung Park presents a more formal discussion of the MCMC method in the context of the Poisson-
Gamma-CAR model. 
 
  Step 1: Specifying a Model 
 
 The MCMC algorithm can be used for many different types of models.  In this version of 
CrimeStat, we examine four types of MCMC model: the normal model, two non-spatial Poisson 
regression models (plus a Logit model that will be discussed in Chapter 18).   
 

The normal model is an MCMC variant on the MLE Ordinary Least Squares.  The two 
Poisson models (Poisson-Gamma and Poisson-Lognormal) are used to test over-dispersion while 
the NB1 model, discussed in Chapter 16, can be used to test under-dispersion.  Figure 17.1 
(which is a repeat of Figure 16.3) illustrates three types of dispersion.  Note that over-dispersion 
is more extreme than under-dispersion though both are skewed.  One has to use one of the 
Poisson family models with skewed count data to avoid introducing bias (see Chapter 15 for a 
discussion of bias from the use of an Ordinary Least Squares model). 

 
Irrespective of the model used, in the Bayesian approach, prior probabilities have to be 

assigned to all unknown parameters,	ߚ, , τ, ν.  It is usually assumed that the k coefficients 

follow a multivariate normal distribution with 1k  dimensions: 
 

),(~ 001 Bbβ kMVN          (17.8) 

 

where 1kMVN  indicates a multivariate normal distribution with 1k dimensions, and 0b  and 0B  

are hyperparameters (parameters that define the multivariate normal distribution).  For a non-
informative prior specification, we usually assume T)0,,0(0 b and a large variance

10 100  kIB , where 1kI  denotes the ( 1k )-dimensional identity matrix. Alternatively, 

independent normal priors can be placed on each of the regression parameters, e.g.  

).100,0(~ Nk  If no prior information is known aboutβ , then sometimes a flat uniform prior is 

also used, ),(~ Uj .  

 
1. Normal Model.  This is similar to the Ordinary Least Squares model discussed in 

Chapter 15 in that it assumes the dependent variable is normally-distributed.  
However, it is estimated by the MCMC algorithm rather than by MLE. 

 



Figure 17.1:
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 The dependent variable y is a function of an expected mean for observation		݅ and an error 

term, i : 

 

௜ݕ  ൌ ௜ߣ ൅ i             (17.9) 

  
where λi is the predicted value of y and is a function of k independent variables (covariates), 
 

௜ߣ  ൌ βxT
i           (17.10) 

 
β  is a vector of unknown coefficients for the k covariates plus an intercept.  The error terms   

are independently and identically distributed as normal. Formally, it is defined as:   
       

),0(~  Normali          (17.11) 

 

with τ being the variance The model error, i , is independent of all covariates.  The variance, τ, 

is assumed to follow a gamma distribution with a mean equal to 1 and a variance equal to 
 /1  where   is a parameter that is greater than 0. The assumption on the uncorrelated error 

term i  is that it is constant for all observations.  From equation 17.9, it follows that  

 
),(~  ii Normaly                                (17.12) 

 
2. Poisson-Gamma Model.  This is similar to the negative binomial model 

discussed in Chapter 16 except that it is estimated by MCMC rather than by MLE.  
The Poisson-Gamma model is used when there is over-dispersion in the 
dependent variable.  Formally, it is defined as: 

 

 )(~| iii Poissony                               (17.13) 

 

The Poisson mean  i  is organized as:  

 
 )exp( i

T
ii   βx                              (17.14) 

 
where exp() is an exponential function, β  is a vector of unknown coefficients for the k covariates 

plus an intercept, and i  is the model error independent of all covariates. The error, )exp( i , is 

assumed to follow a gamma distribution with a mean equal to 1 and a variance equal to  /1  

where   is a parameter that is greater than 0 (Lord, 2006; Cameron & Trivedi, 1998). 
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3. Poisson-Lognormal Model.  The Poisson-Lognormal model is an alternative to 
the Poisson-Gamma.  It is useful when there is over-dispersion and when there is 
a small sample size (less than 50) and the sample mean is low (<1.0; Park & Lord, 
2007).  It has been used in a number of transportation studies to model motor 
vehicle crashes (El-Basyouny & Sayed, 2009) and has been adapted to the 
Bayesian approach by Ma, Kockelman and Damien (2008).  Like the Poisson-
Gamma model, the Poisson-Lognormal model is defined as: 

 

 )(~| iii Poissony           (17.15) 

 

The Poisson mean  i  is organized as:  

 
 )exp( i

T
ii   βx          (17.16) 

 
where exp() is an exponential function, β  is a vector of unknown coefficients for the k covariates 

plus an intercept, and i  is the model error independent of all covariates. Unlike the Poisson-

Gamma model, the error, )exp( i , is assumed to follow the lognormal distribution with a mean 

equal to 0 and a variance equal to ),(~2
  baGamma .   

 
 The reader is referred to Lord and Miranda-Moreno (2008) for additional details about 
the parameterization of the Poisson-lognormal model. 
 

4. Logit Model.  CrimeStat also includes an MCMC Logit model, but this will be 
discussed in Chapter 18. 

 
How to Choose a Model 

 
A key issue is how to choose among these alternatives.  Overall, the two Poisson-based 

MCMC models give similar coefficients because the expected value is always estimated with a 
Poisson function.  They differ primarily in the dispersion terms.  The user is advised to first run 
an MLE Poisson model and check the diagnostics box. The diagnostics routine provides 
information on whether the dependent variable (the count) is significantly skewed while the 
dispersion parameter from the MLE Poisson model provides information on whether the 
conditional mean (the mean after controlling for the independent predictors) is still skewed.  
Further, for a spatial model (discussed in Chapter 19), the diagnostics routine will provide 
guidelines for the distance decay parameter (alpha).   
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While more research is clearly needed, a simple set of guidelines are as follows: 
 
A. If the dependent variable is not significantly skewed (as indicated by the 

significance level of the “g” skewness test in the diagnostics routine), then run an 
OLS model. 
 

B. If the “g” test of the dependent variable shows significant skewness and the ratio 
of the sample variance to the sample is greater than 2.0, then run an MLE or 
MCMC negative binomial (Poisson-Gamma) model since the negative binomial is 
a robust version of the Poisson.  This is particularly true when the data set is 
larger than 50 cases and when the sample mean is 1.0 or greater.  Note that the 
Poisson-lognormal model will provide similar results.  However, the negative 
binomial is the usual model used with skewed data. 
 

C. If the dispersion parameter in the negative binomial model is very close to 0 and 
is not significant, then the MLE Poisson model can be used.  This is a case of 
equi-dispersion.  However, in our experience very few data sets will show actual 
equi-dispersion.  The vast majority are over-dispersed while some are under-
dispersed. 
 

D. If the “g” test of the dependent variable shows significant skewness and the ratio 
of the sample variance to the sample mean is greater than 2.0 but the sample size 
is less than 50 and the sample mean is less than 1.0, then use the MCMC Poisson-
Lognormal model because it is a more robust model than the Poisson-Gamma 
with small samples and low sample means. 

 
E. Finally, if the “g” test of the dependent variable shows significant skewness but 

the dispersion parameter in the negative binomial is less than 0, then use the NB1  
model that was discussed in Chapter 16.  This is a case of under-dispersion where 
the conditional variance is less than the conditional mean.   
 

F. For all of these tests, the user should be aware of extreme outliers and 
multicollinearity among the independent variables (i.e., eliminate overlapping, 
multicollinear variables) as this can cause instability in the coefficients as well as 
cause models to shift from over-dispersion to under-dispersion, or vice versa. 

 
Data with a Large Number of Zeros  

 
The available Poisson models will handle the vast majority of data sets with count data.  

However, very occasionally, a data set with an extreme number of zeros will be found (e.g., 70% 
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or more of the cases have zero for the dependent variable). In cases where the dataset contains a 
large amount of zeros, traditional models, such as the Poisson-gamma or the Poisson-lognormal, 
can provide biased estimates or have difficulties converging. To overcome this problem, Poisson 
and negative binomial zero-inflated (ZI) models could be used (Lambert, 1992), as long as the 
model properly characterizes the data generating process (Lord et al., 2005). More recently, the 
Negative Binomial-Lindley (NB-L) distribution has been proposed to model datasets with a large 
number of zeros (Ghitany et al., 2008; Lord and Geedipally, 2011). The NB-L distribution is, as 
the name implies, a mixture of the NB and the Lindley distributions (Lindley, 1958; Ghitany et 
al., 2008). This two-parameter distribution has interesting and thorough theoretical properties in 
which the distribution is characterized by a single long-term mean that is never equal to zero and 
a single variance function, similar to the traditional NB distribution. This year, Geedipally et al. 
(2012) were able to fully develop the NB-L generalized linear model. The model has, in fact, 
been found to perform much better than the ZI models. The NB-L may be incorporated in a 
future version of CrimeStat. 

  
  Step 2: Setting up a Likelihood Function 
 
 For any of these types of non-spatial Poisson model, the log likelihood function is set up 
as a sum of individual logarithms of the model.  In the case of the Poisson-Gamma model, the 
log likelihood function is: 
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with iy being the observed (actual) value of the dependent variable, i  being the posterior mean of  

each site, ii  ln ,  is the inverse dispersion parameter, and i is an offset (‘at risk’) variable. 

 
 For the Poisson-Lognormal model, the log likelihood function is: 
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with iy being the observed (actual) value of the dependent variable, i  being the posterior mean of  

each site, ii  ln , and i is an offset (‘at risk’) variable. 
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Step 3: Defining a Joint Posterior Distribution 
 
In the case of the Poisson-Gamma model, the posterior probability, ),,ay,|,β,λ(  bp  

of the joint posterior distribution is defined as: 
 

,ߣሺߨ  ,ߚ ,ݕ|߰ ܽఠ, ܾఠሻ ݂ሺߣߥ|ݕሻ ∙ ,ࢼ|ߣሺߨ ߰ሻ ∙ ଵሻߚሺߨ ∙∙∙ ௃ሻߚሺߨ ∙ ,ሺ߰|ܽఠߨ ܾఠሻ  (17.19) 

 

where iy is the observed value of the dependent variable, β are the coefficients of each 

independent variable, ψ is the inverse dispersion parameter, while αω and bω are hyperparameters 
estimated internally in the routine.  The equation is not in standard form (Park, 2009).  Note that 

this is a general formulation.  The parameters of interest are ),,(),,( 11 Jn    and  .  

 
 For the Poisson-Lognormal, the posterior probability, ),,ay,|,β,λ(  bp of the joint 

posterior distribution is defined as: 
 
,ߣሺߨ  ,ߚ ߬ఌ|ݕ, ܽఌ, ܾఌሻ ݂ሺߣߥ|ݕሻ ∙ ,ࢼ|ߣሺߨ ߬ఌሻ ∙ ଵሻߚሺߨ ∙∙∙ ௃ሻߚሺߨ ∙ ,ሺ߬ఌ|ܽఌߨ ܾఌሻ  (17.20) 

 

where iy is the observed value of the dependent variable, β are the coefficients of the independent 

variable, λ is the Poisson mean, τε is the inverse of the variance and is Gamma distributed, and a 

and b are hyperparameters that are estimated internally in the routine.   
 
 In all the cases, since it is difficult to draw samples of the parameters from the joint 
posterior distribution, we usually draw samples for each parameter from its full conditional 
distribution sequentially.  This is an iterative process (the Markov Chain part of the algorithm). 
 
 Prior distributions for these parameters have to be assigned.  In the CrimeStat 
implementation, there is a parameter dialogue box that allows estimates for each of the 
parameters (including the intercept).  On the other hand, if the user does not know which values 
to assign as prior probabilities, very vague values are used as default conditions to simulate what 
is known as non-informative priors (essentially, vague information).  Sometimes these are known 
as flat priors if they assume all values are likely.  In CrimeStat, we assign a default value for the 
expected coefficients of 0 and a very large variance.  As mentioned, the user can substitute more 
precise values for the expected value of the coefficients or the variance (based on previous 
research, for example).  Generally, having more precise prior values for the parameters will lead 
to quicker convergence and a more accurate estimate. 
 
  



17.13 

Step 4: Drawing Samples from the Full Conditional Distribution 
 

While there are several approaches to sampling from a joint posterior distribution, the 
particular sampling algorithm used in CrimeStat is a Metropolis-Hastings (or MH) algorithm 
within a Gibbs framework.2  The MH algorithm is a general procedure for estimating the value 
of parameters of a function (Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth, Teller & 
Teller, 1953).  It was developed during the U. S. Hydrogen Bomb project by Rosenbluth and his 
colleagues and improved by Hastings.3  Gibbs sampling requires the specification of a full 
conditional distribution for each parameter in which the probability is proportional to a simpler 
distribution that includes only variables (with all constants being dropped).  If the full 
conditionals can be specified, then this is the most efficient.  However, since the full conditional 
distribution itself can be complicated (and becomes more so when a spatial component is added), 
the MH algorithm can be used to sample from a distribution that represents the target 
distribution.   With this algorithm, we do not need to sample directly from the target distribution 
but from an approximation called a proposal distribution (Lynch, 2007).  The actual sampling of 
parameters within those two algorithms is done through either direct sampling or slice sampling 
depending on the function.4 
 

The basic MH algorithm consists of six steps (Train, 2009; Lynch, 2007; Denison, 
Holmes, Mallick, & Smith, 2002). 
 

1. Define the functional form of the target distribution and establish starting values for 
each parameter that is to be estimated, θ0.  For the first iteration, the existing value of 
the parameter, θE, will equal θ0. Set t=1. 
 

2. Draw a candidate parameter from a proposal density, θC.   
 

3. Compute the posterior probability of the candidate parameter and divide it by the 
posterior probability of the existing parameter.  Call this R. 
 

4. If R is greater than 1, then accept the proposal density, θC.  

                                                            
2  For information on the MH algorithm, see Gelman, Carlin, Stern & Rubin (2004) and Denison, Holmes, 

Mallick, &Smith, (2002).  For information on the Gibbs algorithm, see Lynch (2008); Gelman, Carlin, 
Stern & Rubin (2004);  and Denison, Holmes, Mallick, & Smith (2002).   

3  It is called Metropolis-Hasting because Nicolas Metropolis was the first name listed on the paper.  
However, the math was developed mostly by Marshall Rosenbluth with the idea proposed by Edward 
Teller and the programming done by Arianna Rosenbluth (Wikipedia, 2012). 

4  Slice sampling is a way of drawing random samples from a distribution by alternative horizontal and 
vertical sampling under the density distribution (Radford, 2003). 
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5. If R is not greater than 1, compare it to a random number drawn from a uniform 
distribution that varies from 0 to 1, u.  If R is greater than u, accept the candidate 
parameter, θC.  If R is not greater than u, keep the existing parameter θE. 
 

6. Return to step 2 and keep drawing samples until sufficient draws are obtained. 
 

Let us discuss these steps briefly.  In the first step, an initial value of the parameter is 
taken.  It is assumed that the functional form of the target population is known and has been 
defined (e.g., the target is a Poisson-Gamma function, a Poisson-Gamma-CAR, a Poisson-
Lognormal-SAR function, a Binomial logit-CAR, etc.). The initial value should be consistent 
with this function.   As mentioned above, a non-informative prior value can be selected. 

 
Second, for each parameter in turn, a value is selected from a proposal density 

distribution.  It is considered a ‘candidate’ since it is not automatically accepted as a draw from 
the target distribution.  The proposal density can take any form that is easy to sample from, such 
as a normal distribution or a uniform distribution though usually the normal is used.  Also, 
usually the distribution is symmetric though the algorithm can work for non-symmetric proposal 
distributions, too (Lynch, 2007, 109-112).  In the CrimeStat implementation, we use a normal 
distribution.  The proposal distribution does not have to be centered over the previous value of 
the parameter.  

 
Third, the ratio of the posterior probability of the candidate parameter to the posterior 

probability of the existing parameter is calculated.  This is called the Acceptance probability and 
is defined as: 

 

 Acceptance probability =  
)(*)(

)(*)(

CE

EC

gf

gf
R




      (17.21) 

 
The acceptance probability is made up of the product of two ratios. The function f is the 

target distribution and the function g is the proposal distribution. The first ratio, )(*)( EC ff  , is 

the ratio of the densities of the target function using the candidate parameter in the numerator 
relative to the existing parameter in the denominator.  That is, with the target function (the 
function for which we are trying to estimate the parameter values), we calculate the density using 
the candidate value and then divide this by the density using the existing value.  Lynch (2007) 
calls it the importance ratio since the ratio will be greater than 1 if the candidate value yields a 
higher density (and, consequently, higher probability) than the existing one. 

 

The second ratio, )(*)( CE gg  , is the ratio of the proposal density using the existing 

value to the proposal density with the candidate value.  This latter ratio adjusts for the fact that 
some candidate values may be selected more often than others (especially with asymmetrical 
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proposal functions).  Note that the first ratio involves the target function densities whereas the 
second ratio involves the proposal function densities.  If the proposal density is symmetric, then 
the second ratio will only have a very small effect.  

 
Fourth, if R is greater than 1, meaning that the proposal density is greater than the 

original density, the candidate is accepted.  However, if R is not greater than 1, this does not 
mean that the candidate is rejected but is instead compared to a random draw (otherwise we 
would have a ‘greedy algorithm’ that would only find local maxima). 

 
Fifth, a random number, u, that varies from 0 to 1 is drawn from a uniform distribution 

and compared to R.  If R is greater than u, then the value of the candidate parameter is accepted 
and becomes the new ‘existing’ parameter.  Otherwise, if R is not greater than u, the existing 
parameter remains. Finally, in the sixth step, we repeat this algorithm and keep drawing samples 
until the desired sample size is reached. 
 
 Now what does this procedure do?  Essentially, it draws values from the proposal 
distribution that increase the probability obtained from the target distribution. That is, generally 
only candidate values that increase the importance ratio will be accepted.  But, this will not 
happen automatically (as, for example, in a greedy algorithm) since the ratio has to be compared 
to a random number, u, from 0 to 1.  In the early steps of the algorithm, the random number may 
be higher than the existing R since it varies from 0 to 1.  Thus, the candidate value is initially 
rejected more because it does not contribute to a high R ratio.   
 
 But, slowly, the acceptance probability will start to be accepted more often than the 
random draw since the candidate value will slowly approximate the true value of the parameter 
as it maximizes the target function’s probability.  Using the hill climbing analogy, the climber 
will wander around initially going in different directions but will slowly start to climb the hill 
and, most likely, the hill that is highest in the nearby vicinity.  Each step that goes up will be 
accepted.  But, each step that goes down will not necessarily be rejected since it is compared 
with a random ‘step’.  Thus, the climber explores other directions than just ‘up’.  But, over time, 
the climber will slowly move upward and, probably, more likely climb the highest hill nearby.  
 

It is still possible for this algorithm to find a local ‘peak’ rather than the highest ‘peak’ 
since it explores in the vicinity of the starting location.  To truly climb the highest peak, the 
algorithm needs a good starting value.  Where does this ‘good’ starting value come from?  
Earlier research can be one basis for choosing a likely starting point.  The more a researcher 
knows about a phenomenon, the better the researcher can utilize that information to ensure that 
the algorithm starts at a likely place.  Without previous research to provide that value, however, 
Lynch (2007) proposes using the MLE approach to calculate parameters that are used as the 
initial values.  That is, for a common distribution, such as the negative binomial, we use the 



17.16 

MLE negative binomial to estimate the values of the coefficients and intercept and then plug 
these into the MCMC routine as the initial values for that algorithm.  CrimeStat allows the 
defining of initial values for the coefficients in the MCMC routine. 
 

Step 5: Summarizing the Results from the Sample 
 

 Finally, after a sufficient number of samples have been drawn, the results can be 
summarized by analyzing the sample.  That is, if a sample is drawn from a target population 
(using the MH approach or another one, such as the Gibbs method), then the distribution of the 
sample parameters is our best guess for the distribution of the parameters of the target function.  
The mean of each parameter would be the best guess for the coefficient value of the parameter in 
the target function.  Similarly, the standard deviation of the sample values would be the best 
guess for the standard error of the parameter in the target distribution.   
 

Credible intervals can be estimated by taking percentiles of the distribution.  This is the 
Bayesian equivalent to a confidence interval in that it is estimated from a sample rather than 
from an asymptotic distribution.  For example, the 95% credible interval can be calculated by 
taking the 2.5th and 97.5th percentiles of the sample while the 99% credible interval can be 
calculated by taking the 0.5th and 99.5th percentiles.  There are also other statistics that can be 
calculated, for example the median (50th percentile and the inter-quartile range (25th and 75th 
percentiles).   
 
 In other words, the entire MCMC sample is used to calculate statistics about the target 
distribution.  Once the MCMC algorithm has reached ‘equilibrium’, meaning that it 
approximates the target distribution fairly closely, then a sample of values for each parameter 
from this algorithm yields an accurate representation of the target distribution. 
 
 MCMC Output 
 
 Let us discuss the statistics presented in the MCMC output.   
 
  Summary Statistics 
 

First, there are the summary statistics represented by the log likelihood, the AIC, the 
BIC/SC, the Deviance, and Pearson Chi-square indices. Second, there are statistics for model 
error represented by the MAD and the MSPE; as with the MLE output, quartiles for these error 
statistics are presented.  Third, there are the coefficients, the standard error, and a t-test based on 
the assumption that the distribution was normal and that the “t” is applicable (an assumption that 
is not necessarily correct).  We present this because it allows a quick evaluation of the 
‘significance’ of an independent variable. 
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 Convergence Statistics 
 
Fourth, in addition to these individual statistics, there are convergence statistics which 

indicate whether the algorithm converged (Spiegelhalter, Best, Carlin, & Van der Linde, 2002).  
It is essential for the user to evaluate whether the sequence converged; if it did not, then the 
coefficients and standard errors are not valid.  These statistics are calculated by comparing 
chains of estimated values for parameters, either with themselves or with the complete series. 
When there is convergence, the estimates will be similar.  

 
 The first convergence statistic is the Monte Carlo simulation error (called MC Error; 

Ntzoufras, 2009, 30-40).  Two estimates of the value of each parameter are calculated and their 
discrepancy is evaluated.  The first estimate is the mean value of the parameter over all M-L 
iterations (total number of iterations minus the number of burn-in samples discarded).  The 
second estimate is the mean value of the parameter after breaking the M-L iterations into m 
chains where m is the integer value of the square root of M-L.   
 
Let: 
 

 KMean
i

iK /)(          (17.22) 
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       (17.24) 

 
Generally, the MC error is related to the standard deviation of the parameters.  If the ratio 

is less than 0.05, then the sequence is considered to have converged after the ‘burn in’ samples 
have been discarded (Ntzourfras, 2009).  As can be seen, the ratios are very low in Table 17.1. 
 
 The second convergence statistic is the Gelman-Rubin convergence diagnostic (G-R, 
sometimes called the scale reduction factor; Gelman, Carlin, Stern & Rubin, 2004; Gelman, 
1996; Gelman & Rubin, 1992).  Gelman and Rubin called it the R statistic, but we will call it the 
G-R statistic.  The concept is, again, to break the larger chain into multiple smaller chains and 
calculate whether the variation within the chains for a parameter approximately equals the total 
variation across the chains (Carlin & Louis, 2008; Lynch, 2007).  That is, when m chains are run, 
each of length n, the mean of a parameter θm can be calculated for each chain as well as the 
overall mean of all chains θG, the within-chain variance, and the between-chain variance.  The G-
R statistic is the square root of the total variance divided by the within-chain variance: 
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where B is the variance between the means from the m parallel chains, W is the average of the m 
within-chain variances, and n is the length of each chain (Lynch, 2007; Carlin & Louis, 2000). 
   
 The G-R statistic should generally be low for each parameter.  If the G-R statistic is 
under approximately 1.2, then the posterior distribution is commonly considered to have 
converged (Mitra and Washington, 2007).    
 

Example of Estimating Houston Burglaries with the MCMC Poisson-Gamma 
 

 Before we discuss some of the subtleties of the method, let us illustrate this with the 
Houston burglary example that we have been using in the previous two chapters (Table 17.1).  
The data came from the Houston Police Department.  There were 26,480 burglaries that occurred 
in 2006 which were allocated to 1,179 Traffic Analysis Zones (TAZ) within the City of Houston. 
The independent variables were the number of households in 2006 (estimated by the Houston-
Galveston Area Council, the metropolitan planning organization) and the median household 
income for 2000 (from the 2000 U.S. Census). 
 

The MCMC algorithm for the Poisson-Gamma (negative binomial) model was run on the 
Houston burglary dataset.  The total number of iterations was 25,000 with the initial 5,000 being 
discarded (the ‘burn in’ period).  Thus, the results are based on the final 20,000 samples.  
 
  Comparison of MCMC Poisson-Gamma with MLE Poisson-Gamma 
 

By comparing the results of the MCMC Poisson-Gamma estimate on the Houston 
burglary data set with that from the MLE Poisson-Gamma  model from the previous chapter 
(Table 15.3), we can show that the MCMC method produces very similar results to the MLE 
when the estimated functions are identical. This is expected since the hyper-priors MCMC are 
very vague or have large variance. In Table 17.1, the two convergence statistics are very low for 
all three parameters as well as for the error term.  In other words, the algorithm appears to have 
converged properly and the results are based on a good equilibrium chain. 
 

Second, looking at the likelihood statistics, we see that they are very similar to that of the 
MLE negative binomial model.  The log likelihood value is identical for the two models -4430.8.  
The AIC and BIC/SC statistics are also almost identical (8869.6 and 8869.8 compared to 8869.6 
and 8889.9). The deviance statistic is very similar for the two models - 1,387.5 compared to 
1,390.1, as is the Pearson Chi-square statistic – 1,106.4 compared to 1,112.7. 
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Table 17.1: 

Predicting Burglaries in the City of Houston: 2006 
MCMC Poisson-Gamma Model 

(N= 1,179 Traffic Analysis Zones) 
 
 DepVar:                              2006 BURGLARIES  
 N:                                    1,179 
 Df:                                   1,175 
 Type of regression model:            Poisson  with Gamma dispersion 
 Method of estimation:                 MCMC 
 Number of iterations:                25,000  Burn in:  5,000 
 
 Likelihood statistics 
 Log Likelihood:                      -4,430.8 
 AIC:                                  8,869.6 
 BIC/SC:                               8,889.9 
 Deviance:    1,387.5  p≤ 0.0001 
 Pearson Chi-Square:                  1,106.4  p≤ 0.0001 
 Model error estimates 
 Mean absolute deviation:             40.0 

1st (highest) quartile:        124.9 
 2nd quartile:         19.5 
 3rd quartile:         6.2 
 4th (lowest) quartile:        9.0 
 Mean squared predicted error:        63,007.2 

1st (highest) quartile:       245,857.0 
 2nd quartile:         6,527.5 
 3rd quartile:         119.4 
 4th (lowest) quartile:        156.2 
 Dispersion tests 
 Adjusted deviance:                   1.2  p≤ 0.0001 
 Adjusted Pearson Chi-Square:         0.9  p≤ 0.0001 
 Dispersion multiplier:               1.5  p≤ 0.0001  Inverse dispersion multiplier: 0.7 
 
          MC error/ 
Predictor     Mean  Std    t-valuep  MC error std     G-R stat 
------------------------------------------------------------------------------------------------------------------------------------- 
INTERCEPT         2.3204  0.086  26.88***  0.002    0.019   1.002  
HOUSEHOLDS    0.0012   0.00007     17.57***    0.0000009 0.013    1.001  
MEDIAN  
HOUSEHOLD 
INCOME   -0.00001 0.00002  -4.92***  0.00000003 0.019    1.002 
------------------------------------------------------------------------------------------------------------------------------------- 
***  p≤.001 
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Third, in terms of the model error statistics, the MAD and MSPE are also very similar 
(40.0 and 63,007.2 compared to 39.6 and 62,031.2; while the difference in the MSPE is 976.0, it 
is less than 2% of the MSPE for the MLE.5  Fourth, the over-dispersion tests reveal identical 
values - adjusted deviance (1.2 for both), adjusted Pearson Chi-square (0.9 for both), and the 
Dispersion multiplier (both 1.5). 
 
 Fifth, the coefficients are identical with the MLE up through third decimal place.  For 
example, for the intercept the MCMC gives 2.3204 compared to 2.3210; that of the two 
independent variables are identical within the precision of the table.   This is not surprising since 
when we use non-informative priors, it is expected that the posterior estimates will be very close 
to those estimated by the MLE. 
 

Sixth, the standard errors are identical for all three coefficients. In the MCMC, the 
standard errors are calculated by taking the standard deviation of the sample.  In general, the 
MCMC will produce similar or slightly larger standard errors.  The theoretical distribution 
assumes that the errors are normally distributed.  This may or may not be true depending on the 
data set.  Thus, the MCMC standard errors are non-parametric. 

 
Seventh, a t-test (or more precisely a ‘pseudo’ t-test) is calculated by dividing the 

coefficient by the standard error.  If the standard errors are normally distributed (or 
approximately normally distributed), then such a test is valid.  On the other hand, if the standard 
errors are skewed, then the approximate t-test is not accurate.  CrimeStat outputs additional 
statistics that list the percentiles of the distributions.  These are more accurate indicators of the 
true confidence intervals and are known as credible intervals.  We will illustrate these shortly 
with another example.  In short, the pseudo t-test is an approximation to true statistical 
significance and should be seen as a guide, rather than a definitive answer. 

 
 Example of Estimating Houston Burglaries with the MCMC Normal 
 
 As an example of the MCMC Normal model, we ran the model on the Houston burglary 
data set.   Keep in mind that this is a skewed data set and that the Normal model is not really 
appropriate.  Table 17.2 presents the results.  As a comparison, we repeat the MLE Normal/OLS 
model from Chapter 15 (Table 15.1). 
  
  

                                                            
5  Frequently, the model error is greater for an MCMC model than an MLE model. Whether this represents 

true model error or overfitting by the MLE algorithm is not fully understood at this point.  
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Table 17.2: 

Predicting Burglaries in the City of Houston: 2006 
MCMC Normal Model 

(N= 1,179 Traffic Analysis Zones) 
 
 DepVar:                              2006 BURGLARIES  
 N:                                    1,179 
 Df:                                   1,175 
 Type of regression model:            Poisson with Lognormal dispersion 
 Method of estimation:                 MCMC 
 Number of iterations:                25,000  Burn in:  5,000 
 
 Likelihood statistics 
 Log Likelihood:                      -5342.6 
 AIC:                                 10,693.2 
 BIC/SC:                              10,713.6 
R2:     0.48 

 
 Model error estimates 
 Mean absolute deviation:            13.5 

1st (highest) quartile:        26.5 
 2nd quartile:         10.6 
 3rd quartile:         8.2 
 4th (lowest) quartile:        8.6 
 Mean squared predicted error:      505.1 
 1st (highest) quartile:       1,501.7 
 2nd quartile:         272.3 
 3rd quartile:         130.5 
 4th (lowest) quartile:        120.0 
 
          MC error/ 
Predictor     Mean Std    t-valuep  MC error std               G-R stat 
------------------------------------------------------------------------------------------------------------------------------- 
INTERCEPT       12.7804  1.235  10.35***  0.020    0.016    1.001 
HOUSEHOLDS    0.0255 0.001      32.62***    0.000009 0.011        1.0005  
MEDIAN  
HOUSEHOLD 
INCOME      -0.0002 0.00003  -7.00***  0.0000004 0.015     1.0004 
------------------------------------------------------------------------------------------------------------------------------- 
**  p≤.01 
***  p≤.001 
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Table 15.3 (REPEAT): 

Predicting Burglaries in the City of Houston: 2006 
Ordinary Least Squares: Reduced Model 

(N= 1,179 Traffic Analysis Zones) 
 
DepVar:                              2006 BURGLARIES 
N:                                    1,179 
Df:                                  1,175 
Type of regression model:           Ordinary Least Squares 
F-test of model:   536.0   p≤.0001 
R2:                             0.48 
Adjusted R2:                   0.48 
Mean absolute deviation:       13.5 
 1st (highest) quartile:       26.5 
 2nd quartile:        10.6 
 3rd quartile:      8.3 
 4th (lowest) quartile:     8.8 
Mean squared predictive error:      505.1 
 1st (highest) quartile:       1498.8 
 2nd quartile:        269.5 
 3rd quartile:        135.1 
 4th (lowest) quartile:       120.2 
 
Predictor  DF Coefficient Stand Error Tolerance VIF  t-value    p 
---------------------------------------------------------------------------------------------------------------------
INTERCEPT  1 12.8099   1.240    -   -  10.33   0.001 
HOUSEHOLDS  1  0.0255   0.0008 0.994  1.006  33.44   0.001 
MEDIAN  
HOUSEHOLD 
INCOME  1 -0.0002   0.00003 0.994  1.006  -7.03   0.001 
--------------------------------------------------------------------------------------------------------------------- 
   

Comparison of MCMC Normal with MLE Normal 
 
 The MCMC Normal and the MLE Normal produce similar estimates.  The log-likelihood 
statistics are unique to the MCMC model, but the R-squares are identical and the Mean Absolute 
Deviation and the Mean Squared Predictive Error values are very close to each other in both 
models.  This means that the MCMC Normal converged on the function in a similar manner to 
the MLE normal.  Also, the coefficients estimates for the MCMC Normal are quite close to those 
produced by the MLE.   
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Thus, it appears that the MCMC Normal can approximate the MLE Normal under some 
circumstances. Further, if the dependent variable is truly normally distributed, then the MCMC 
Normal will produce results that are almost identical.   

 
Note that this is not always the case.  When the dependent variable is highly skewed, we 

have frequently found that the MCMC Normal model will not produce identical results to that of 
the MLE even if a large number of iterations are run.  We are not completely sure why this 
occurs, but the more skewed the distribution or the more complex the model, the less likely the 
MCMC Normal will yield the same solution as the MLE Normal.  In short, the MCMC Normal 
is very sensitive to skewness in a data set and is most appropriate when the dependent variable is 
normally distributed. 

 
Therefore, the user has to be careful in interpreting the MCMC Normal.  Before running 

a spatial regression model using the MCMC Normal (see Chapter 19), users should confirm that 
the MCMC Normal can replicate an MLE Normal/OLS model.  If it does not, they should run an 
alternative model such as the Poisson-Gamma. 

 
Why Run an MCMC when MLE is So Easy to Estimate?   

 
 What we have seen is that the MCMC Poisson-Gamma (negative binomial) model and 
the MCMC Normal model produced results that were very similar to that of the MLE Poisson-
Gamma and MLE Normal models respectively.  In other words, simulating the distribution of the 
Poisson-Gamma function or the MCMC Normal function with the MCMC method has produced 
results that are completely consistent with a maximum likelihood estimate.  
 
 A key question, then, is why bother?  The maximum likelihood algorithm works 
efficiently with functions from the single-parameter exponential family while the MCMC 
method takes time to calculate.  Further, the larger the database, the greater the differential there 
will be in calculating time.  For example in Chapter 16, Table 16.4 presented an MLE negative 
binomial model of the number of 2006 crimes committed by individual offenders in Manchester 
as a function of three independent variables – distance from the city center, prior conviction, and 
age of the offenders.  With an Intel Duo core 2.44 GHz processor, the run took 6 seconds for the 
MLE while it took 86 minutes for the MCMC equivalent!  Clearly, the MCMC algorithm is more 
calculation intensive than the MLE algorithm.  If they produce essentially the same results, there 
is no obvious reason for choosing the slower method over the faster one. 
 
 The reason for preferring the MCMC method, however, has to do with the complexity of 
other models.  The MLE approach works particularly well when all the individual functions in a 
mixed function model belong to the single-parameter exponential family of functions.  For more 
complex functions, however, the method does not work very well.   The likelihood functions 
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need to be worked out explicitly for the MLE approach to work.  For example, if other functions 
for the dispersion were used, such as a Weibul or Gumbel or Cauchy or uniform distribution, the 
MLE approach would not easily be able to solve such equations since the mathematics are 
complex and there may not be a single optimal solution. 
 
 Further, if we start combining functions in different mixtures, such as Poisson mean, 
Gamma dispersion but Weibul shape function, the MLE is not easily adapted.  An example is 
spatial regression where assumptions about the mean, the variance and spatial autocorrelation 
need to be specified exactly.  This is a complex model and there is not a simple second derivative 
that can be calculated for such a function.  The existing spatial models have tried to work around 
this by using a linear form but allowing a spatial autocorrelation term either as a predictive 
variable (the spatial lag model) or as part of the error term (the spatial error model; DeSmith, 
Goodchild, & Longley, 2007; Anselin, 2002).  But, they all assume a normally-distributed 
dependent variable which is rarely found with crime data. 
 
 In short, the MCMC method has an advantage over MLE for complex functions.  For 
simpler functions in which the functions are all part of the same exponential family and for 
which the mathematics has been worked out, MLE is clearly superior in terms of efficiency.   
 
 However, the more irregular and complex the function to be estimated, the more the 
simulation approach has an advantage over the MLE.  For example, to estimate a Poisson-
Gamma (negative binomial) function takes longer with the MCMC method than with the MLE 
method and there is no advantage for the MCMC over the MLE.  On the other hand, the Poisson-
Lognormal model (see below) or the Poisson-Gamma-CAR model (to be discussed in Chapter 
19) cannot be estimated by MLE.  An even more complex model is a spatial risk model where 
the ‘at risk’ variable is constrained to have a coefficient of 1.0 with spatial autocorrelation also 
being tested; this cannot be estimated with MLE. 

 
Example of Estimating Houston Burglaries with the MCMC Poisson-Lognormal 

 
 For an example of a complex mixed function model, let us run the Houston burglary 
dataset with the Poisson-Lognormal. As mentioned above, the Poisson-Lognormal is an 
alternative model to the Poisson-Gamma.  It is particularly useful when the sample mean is low 
and there are lots of zeros. The Poisson-lognormal is usually more stable than the Poisson-
gamma for these kinds of data. 
 
 Table 17.3 shows the results.  Compared to Table 17.1 for the Poisson-Gamma model, 
the log likelihood of the Poisson-Lognormal is more negative (weaker) than for the Poisson-
Gamma while the AIC and BIC statistics are higher. In other words, the MCMC Poisson-Gamma 
fit the data slightly better than the MCMC Poisson-Lognormal though the differences are  small.   
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Table 17.3: 
Predicting Burglaries in the City of Houston: 2006 

MCMC Poisson-Lognormal Model 
(N= 1,179 Traffic Analysis Zones) 

 
 DepVar:                              2006 BURGLARIES  
 N:                                    1,179 
 Df:                                   1,175 
 Type of regression model:            Poisson with Lognormal dispersion 
 Method of estimation:                 MCMC 
 Number of iterations:                25,000  Burn in:  5,000 
 
 Likelihood statistics 
 Log Likelihood:                      -4,650.2 
 AIC:                                  9,308.4 
 BIC/SC:                               9,328.7 
 Deviance:    1,551.9  p≤ 0.0001 
 Pearson Chi-Square:                  4,685.6  p≤ 0.0001 
 Model error estimates 
 Mean absolute deviation:             37.5 

1st (highest) quartile:        122.5 
 2nd quartile:         20.6 
 3rd quartile:         3.3 
 4th (lowest) quartile:        4.0 
 Mean squared predicted error:        62,216.2 
 1st (highest) quartile:       244,906.0 
 2nd quartile:         4,489.4 
 3rd quartile:         40.4 
 4th (lowest) quartile:        63.4 
 Dispersion tests 
 Adjusted deviance:                   1.3  p≤ 0.0001 
 Adjusted Pearson Chi-Square:         4.0  p≤ 0.0001 
 Dispersion multiplier:               2.0   p≤ 0.0001 Inverse dispersion multiplier: 0.5 
 
          MC error/ 
Predictor     Mean  Std    t-valuep  MC error std     G-R stat 
------------------------------------------------------------------------------------------------------------------------------------- 
INTERCEPT         1.3612  0.092  14.82***  0.002    0.022   1.002  
HOUSEHOLDS    0.0013  0.00005     25.30***    0.0000007 0.014       1.000  
MEDIAN  
HOUSEHOLD 
INCOME   -0.000005 0.00002  -2.92**  0.00000003 0.018    1.001 
------------------------------------------------------------------------------------------------------------------------------------- 
**  p≤.01 
***  p≤.001 
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However, the log-likelihood is the overall probability of the model, not particularly the 
best fit for the residual errors.  Comparing Tables 17.1 and 17.2, we find that the MAD and the 
MSPE are smaller for the Poisson-Lognormal than for the Poisson-Gamma.  The coefficients are 
very similar.  The intercept is smaller in the Poisson-Lognormal while the coefficients for 
households and for median household income are virtually the same.  In short, the Poisson-
Lognormal will predict a slightly smaller expected count than the Poisson-Gamma due to the 
smaller intercept term, but the two sets of estimates are quite similar.  In other words, with these 
data, the Poisson-Lognormal model produces a slightly lower probability but a better fit than the 
Poisson-Gamma.  In this case, we would accept the Poisson-Gamma because the differences are 
not great.  But, there are data sets where the Poisson-Lognormal is definitely better than the 
Poisson-Gamma (Lord & Miranda-Moreno, 2008). 
 

Risk Analysis 
 
One example of where the MCMC method is better than the MLE method is in risk 

analysis. Sometimes a dependent variable is analyzed with respect to an exposure variable.  For 
example, instead of modeling just burglaries, a user might want to model burglaries relative to 
the number of households.  In our example in this chapter (Houston burglaries), we have 
included the number of households as a predictor variable but it is unstandardized, meaning that 
the estimated effect of households on burglaries cannot be easily compared to other studies that 
model burglaries relative to households. 

 
For this, a different type of analysis has to be used.  Frequently called a risk analysis, the 

dependent variable is related to an exposure measure.  The formulation we use is that of Besag, 
Green, Higdon and Mengersen (1995).  Like all the non-linear models that we have examined, 

the dependent variable, iy , is modeled as a Poisson function of the mean, λi: 

 

 )(~| iii Poissony           (17.26) 

 
In turn, the mean of the Poisson is modeled as: 

 

 iii             (17.27) 

 

where i  is an exposure measure and i  is the rate (or risk).  The exposure variable is the 

baseline variable to which the number of events is related.  For example, in motor vehicle crash 
analysis, the exposure variable is usually Vehicle Miles Traveled or Vehicle Kilometers Traveled 
(multiplied by a power of 10 to eliminate very small numbers, such as per 1000 or per 100 
million).  In epidemiology, the exposure variable is the population at risk, either the general 
population or the population of a specific age group perhaps broken down further into gender.  
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For crime analysis, the exposure variable might be the number of households for residential 
crimes or the number of businesses for commercial crimes.  Choosing an appropriate exposure 
variable is not a trivial matter. In some cases, there are national standards for exposure (e.g., 
number of infants for analyzing child mortality; Vehicle Miles Traveled for analyzing motor 
vehicle crash rates).  But, often there are not accepted exposure standards. 
 
 In some cases, the exposure variable may be non-linear in order to capture important 
missing variables. For instance, in highway safety, traffic flow (i.e., the number of vehicle 
traveling passing a given point in a unit of time) has been found to vary in a non-linear fashion. 
This characteristic can be explained by the fact vehicle occupancy (i.e., the number of vehicles 
per unit of length) and vehicle speed, which are directly linked to traffic flow, are variables that 
are not availabe or routinely collected. Hence, traffic flow tends to show non-linear relationships 
(see Lord, Manar, &Vizioli, 2005, for more details). 
 

The rate is further structured in the Poisson-Gamma or Poisson-Lognormal models: 
 
 )βxexp( i

T
iiiii           (17.28) 

 
where the symbols have the same definitions as in equation 17.18 with the error term, εi, being 
modeled either as a Gamma function (equation 17.9) or as a Lognormal function (equation 6.10). 
 

With the exposure term, the full model is estimated as the same fashion, 
 

 )(~ iii Poissony           (17.29) 

 

 ),(~ i
T
ieGammai

 β-x                  (17.30) 

 

 )],(,0[~  baGammaLognormali        (17.31) 

 

Note that no coefficient for the exposure variable, i , is estimated (i.e., it is 1.0).  It is 

sometimes called an offset variable (or exposure offset).  The model is then estimated either with 
an MLE or MCMC estimation algorithm. 
 

An example is that of Levine (2011) who analyzed the number of motor vehicle crashes 
in which a male was the primary driver relative to the number of crashes in which a female was 
the primary driver for each major road segment in the Houston metropolitan area.  In the risk 
model set up, the dependent variable was the number of crashes involving a male primary driver 
for each road segment while the exposure (offset) variable was the number of crashes involving a 
female primary driver.  The independent variables in the equation were volume-to-capacity ratio 
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(an indicator of congestion on the road), the distance to downtown Houston, and several road 
categories (freeway, principal arterial, etc). 
 
 To illustrate this type of model, we ran a MCMC Poisson-Gamma model using the 
number of households as the exposure variable.  There was, therefore, only one independent 
variable, median household income.  Table 17.4 shows the results 
. 

Compared to the non-exposure burglary model (Table 17.1), the model does not fit the 
data as well.  The log likelihood is lower while the AIC and BIC are higher.  Further, the MAD 
and MSPE statistics for model error are much worse. 

 
Further, the dispersion statistics indicate that there is more over-dispersion with the risk 

model than the simple Poisson-Gamma model. In other words, the exposure variable has not 
eliminated the dispersion as much as the random effects (non-exposure) model. 

 
Looking at the coefficients, the offset variable (number of households) has a coefficient 

of 1.0 because it is defined as such.  The coefficient for median household income is still 
negative, but is stronger than in Table 17.1. The effect of standardizing households as the 
baseline exposure variable has increased the importance of household income in predicting the 
number of burglaries, controlling for the number of households.   
 
 The second part of the table show percentiles for the coefficients, and is preferable for 
statistical testing than the asymptotic t-test.  The reason is that the distribution of parameter 
values may not be normally distributed or may be very skewed, whereas the t- and other 
parametric significance tests assume that there is perfect normality.  CrimeStat outputs a number 
of percentiles for distribution.  We have shown only four of them, the 0.5th, 2.5th, 97.5th, and 
99.5th percentiles.  The 2.5th and 97.5th represent 95% credible intervals while the 0.5th and 99.5th 
represent 99% credible intervals.   

 
The way to interpret the percentiles is to check whether a coefficient of 0 (the ‘null 

hypothesis’) or any other particular value is outside the 95% or 99% credible intervals.  For 
example, with the intercept term, the 95% credible interval is defined by -2.4365 to -2.1292.  For 
both the intercept and median household income, a coefficient of 0 is outside both the 95% and 
99% credible intervals.  In other words, both the intercept and median household income are 
significantly different than 0, though the use of the term ‘significant’ is different than with the 
usual asymptotic normality assumptions since it is based on the distribution of the parameter 
values from the MCMC simulation. 
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Table 17.4: 

Predicting Burglaries in the City of Houston: 2006 

MCMC Poisson-Gamma Model with Exposure Variable 
(N= 1,179 Traffic Analysis Zones) 

 
  DepVar:                              2006 BURGLARIES  
 N:                                    1,179 
 Df:                                   1,176 
 Type of regression model:            Poisson with Gamma dispersion 
 Method of estimation:                MCMC 
 Number of iterations:                25,000  Burn in:                           5,000 
 Distance decay function:             Poisson-Gamma 
 
 Likelihood statistics 
 Log Likelihood:                      -6,634.4 
 AIC:                                  13,274.8 
 BIC/SC:                               13,290.0 
 Deviance:    5,373.5  p≤ 0.0001 
 Pearson Chi-square:   514.4  p≤ 0.0001 
 Model error estimates 
 Mean absolute deviation:             14,147.3 
 Mean squared predicted error:        553,058,555.7 
 Dispersion tests 
 Adjusted deviance:                   4.6 p≤ 0.0001 
 Adjusted Pearson Chi-Square:         0.44 p≤ 0.0001 
 Dispersion multiplier:               2.3 p≤ 0.0001  Inverse dispersion multiplier: 0.44                                             
 
            MC error/ 
Predictor   Mean  Std     t-valuep MC error   std      G-R stat 
-------------------------------------------------------------------------------------------------------------------------------------   
Exposure/offset variable: 
HOUSEHOLDS   1.0    -     -   -   -   - 
Linear predictors: 
INTERCEPT  3.4624      0.0917          37.75***   0.002       0.020   1.002  
MEDIAN  
HOUSEHOLD 
INCOME  -0.00009   0.000002    -4.57***   0.00000004  0.020      1.002 
-------------------------------------------------------------------------------------------------------------------------------------   
***  p≤.001 
 
Percentiles           0.5th         2.5th         97.5th       99.5th 
--------------------------------------------------------------------------------------------------------------------- 
INTERCEPT       3.2242   3.2833   3.6389  3.6942 
MEDIAN  
HOUSEHOLD 
INCOME  -0.00002  -0.00001  -0.00005  -0.00004 
--------------------------------------------------------------------------------------------------------------------- 
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In other words, percentiles can be used as a non-parametric alternative to the t- or Z-test.  
Without making assumptions about the theoretical distribution of the parameter value (which the 
t- and Z-test do – they are assumed to be normal or near normal for “t”), significance can be 
assessed empirically. 

 
In summary, in risk analysis, an exposure variable is defined and held constant in the 

model.  Thus, the model is really a risk or rate model that relates the dependent variable to the 
baseline exposure.  The independent variables are now predicting the rate, rather than the count 
by itself.   

 

Issues in MCMC Modeling 
 
 We now turn to four issues in MCMC modeling.  The first is the starting values of the 
MCMC algorithm.  The second is the issue of convergence to an equilibrium state.  The third 
issue is the statistical testing of parameters and the general problem of overfitting the data while 
the fourth issue is the performance of the MCMC algorithm with large datasets. 
 
 Starting Values of Each Parameter 
 
 The MCMC algorithm requires that initial values be provided for each parameter to be 
estimated.  These are called prior probabilities even though they do not have to be standardized 
in terms of a number from 0 to 1. The CrimeStat routine allows the defining of initial starting 
values for each of the parameters and for the overall Φ coefficient in the various spatial 
regression models (see chapter 18).  If the user does not define the initial starting values, then 
default values are used.  Of necessity, these are vague.  For the individual coefficients (and the 
intercept), the initial default values are 0.  For the Φ coefficient, the initial default values are 
defined in terms of its hyperparameters, (Rho = 0.5; Tauphi = 1; alpha = -1).  Essentially, these 
assume very little about the distribution and are, essentially, non-informative priors. 
 
 The problem with using vague starting values, however, is that the algorithm could get 
stuck on a local ‘peak’ and not actually find the highest probability.  Even though the MCMC 
algorithm is not a greedy algorithm, it still explores a limited space.  It will generally find the 
highest peak within its search radius.  But, there is no guarantee that it will explore regions far 
away from its initial location.  If the user has some basis for estimating a prior value, then this 
will usually be of benefit to the algorithm in that it can minimize the likelihood of finding local 
‘peaks’ rather than the highest ‘peak’. 
 
 Where do the prior values come from?  They can come from other research, of course 
(see Miranda-Moreno et al., 2009).  Alternatively, they can come from other methods that have 
attempted to analyze the same phenomena.  Lynch (2007), for example proposes running an 
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MLE Poisson-Gamma (negative binomial) model and then using those estimates as the prior 
values for the MCMC Poisson-Gamma.  Even if the user is going to run a spatial model (e.g., 
MCMC Poisson-Gamma-CAR/SAR), the estimates from an MLE model are probably good 
starting values.   
 
  Example of Defining Prior Values for Parameters 
 

We can illustrate this with an example.  A model was run on 325 Baltimore County 
traffic analysis zones (TAZ) predicting the number of crimes that occurred in each zone in 1996.  
There were four independent variables: 

1. Population (1996) 
2. Relative median household income index 
3. Retail employment (1996) 
4. Distance from the center of the metropolitan area (in the City of Baltimore) 

 
The dataset was divided into two groups, group A with 163 TAZs and group B with 162 

TAZs.  The model was run as a spatial regression (Poisson-Gamma-CAR – see chapter 19) for 
each of the groups.  Table 17.5 shows the results of the coefficients with the standard errors in 
brackets. 

 
Column 1 shows the results of running the model on group A.  Column 2 shows the 

results of running the model on group B while column 3 shows the results of running the model 
on group B but using the coefficient estimates from group A as prior values.  With the exception 
of the relative income variable, the coefficients of column C generally fall between the results for 
group A and group B by themselves.  Even the one exception – relative income, is very close to 
the ‘non-informative’ estimate for group B. 

 
In other words, using prior values that are based on realistic estimates (in this case, the 

estimates from group A) have produced results that incorporate that information in estimating the 
information just from the data.  Essentially, this is what equation 17.7, updating the probability 
estimate of the data given the likelihood based on the prior probability. In short, using prior 
estimates combines new information with the existing information to update the estimates. Aside 
from protecting against finding local optima in the MCMC algorithm, the prior information 
generally improves the knowledge base of the model. 

 
Convergence 

 
 In theory, the MCMC algorithm should converge into a stable equilibrium state whereby 
the true probability distribution is being sampled.  With the hill climbing analogy, the climber 
has found the highest mountain to be climbed and is simply sampling different locations on the  
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Table 17.5: 

The Effects of Starting Values on Coefficient Estimates  
for Baltimore County Crimes: 

 
Dependent Variable = Number of Crimes in 1996 
 

(1)                                    (2)   (3) 
    Group A    Group B  Group B 
    (N=163 TAZs)  (N=162 TAZs) (N=162 TAZs) 
 
Starting values:   Default/   Default/  Group A  
    ‘non-informative’  ‘non-informative’ estimates 
 
Independent variables 

 
INTERCEPT        4.3621      4.7727      4.7352  
         (0.2674)      (0.2434)      (0.2489) 
 
POPULATION       0.00035      0.00034      0.00035 
         (0.00004)      (0.00004)      (0.00004) 
RELATIVE 
INCOME       -0.0234     -0.0226     -0.0224 
         (0.0047)      (0.0041)      (0.0043) 
RETAIL 
EMPLOYMENT       0.0021      0.0017      0.0017 
         (0.0002)      (0.0002)      (0.0001) 
DISTANCE FROM 
CENTER       -0.0590     -0.0898     -0.0881 
         (0.0160)      (0.0141)      (0.0142) 
AVERAGE 
PHI 
COEFFICIENT       0.0104     -0.0020      0.0077 
         (0.1117)      (0.0676)      (0.0683) 

 
mountain to see which one will provide the best path up the mountain.  The first iterations in a 
sequence are thrown away (the ‘burn in’) because the sequence is assumed to be looking for the 
true probability distribution.  Put another way, the starting values of the MCMC sequence have a 
big effect on the early draws and it takes a while for the algorithm to move away from those 
initial values (remember, it is a random walk and the early steps are near the initial starting 
location).    
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 A key question is how many samples to draw and a second, ancillary question is how 
many should be discarded as the ‘burn in’?  Unfortunately, there is not a simple answer to these 
questions.  For some distributions, the algorithm quickly converges on the correct solution and a 
limited number of draws are needed to accurately estimate the parameters.  In the Houston 
burglary example, the algorithm easily converged with 20,000 iterations after the first 5,000 had 
been discarded.  We have been able to estimate the model accurately after only 4000 iterations 
with 1000 burn in samples being discarded.  The dependent variable is well behaved because it is 
at the zonal level and the model is simple. 
 
 On the other hand, some models do not easily converge to an equilibrium stage.  Models 
with individual level data are typically more volatile.  Also, models with many independent 
variables are complex and do not easily converge.  To illustrate, we estimate a model of the 
residence locations of drunk drivers (DWI) who were involved in crashes in Baltimore County 
between 1999 and 2001 (Levine & Canter, 2011).  The drivers lived in 532 traffic analysis zones 
(TAZ) in both Baltimore County and the City of Baltimore.  The dependent variable was the 
annual number of drivers involved in DWI crashes who lived in each TAZ and there were six 
independent variables: 
 

1. Total population of the TAZ 
2. The percent of the population who were non-Hispanic White 
3. Whether the TAZ was in the designated rural part of Baltimore County (dummy 

variable: 1 – Yes; 0 – No) 
4. The number of liquor stores in the TAZ 
5. The number of bars in the TAZ 
6. The area of the TAZ (a control variable). 

 
 Table 17.6 presents the results. The overall model fit was statistically significant and 
there was very little over-dispersion (as seen by the dispersion parameter). A “pure” Poisson 
model could have been used in this case.  Of the parameters, the intercept and four of the six 
independent variables were statistically significant, based on the t-test.  The results were 
consistent with expectations, namely zones (TAZs) with greater population, a greater percentage 
of non-Hispanic White persons, that were in the rural part of the county, that had more liquor 
stores, and that had more bars had a higher number of drunk drivers residing in those zones. 
 
 However, the convergence statistics were questionable.  Two of the parameters had G-R 
values higher than the acceptable 1.2 level and five of the MC error/standard error values were 
higher than the acceptable 0.05 level.  In other words, it appears that the model did not properly 
converge. Consequently, we ran the model again with 100,000 iterations and discarded the initial 
10,000 ‘burn in’ samples. Table 17.7 shows the results.  Comparing tables 17.6 with 17.5, we 
can see that the overall likelihood statistics was approximately the same as were the dispersion  
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Table 17.6: 

Number of Drivers Involved in DWI Crashes  
Living in Baltimore County: 1999-2001 

MCMC Poisson-Gamma Model with 20,000 Iterations 
(N= 532 Traffic Analysis Zones) 

 
 DepVar:                             Annual Number of Drivers in DWI Crashes Living in TAZ 
 N:                                    532 
 Type of regression model:           Poisson with Gamma dispersion 
 Method of estimation:    MCMC 
 Total number of iterations:          25,000  Burn in: 5,000 
  
 Likelihood statistics 
 Log Likelihood:                     -278.7 
 AIC:                                 573.4 
 BIC/SC:                              607.6 
 Deviance:    316.6  p:  0.0001 
 Pearson Chi-square:   475.6  p:  0.0001 
 Model error estimates 
 Mean absolute deviation:            0.32 
 Mean squared predicted error:       0.25 
 Dispersion tests 
 Adjusted deviance:                   0.60 p: 0.0001 
 Adjusted Pearson Chi-Square:        0.91 p: 0.0001 
 Dispersion multiplier:               0.15 p: 0.0001 Inverse dispersion multiplier:  6.77 
 
          MC error/ 
Predictor  Mean  Std    t-valuep MC error std           G-R stat 
-----------------------------------------------------------------------------------------------------------------------------
INTERCEPT -4.5954  0.476  -9.65***    0.0386   0.081  1.349 
POPULATION  0.0004    0.00005    8.70***    0.000003   0.068    1.165  
PERCENT 
  WHITE    0.0237   0.005       4.81***      0.0004      0.079   1.283  
RURAL    0.6721   0.329       2.04*       0.0184      0.056   1.042  
LIQUOR  
  STORES     0.2423   0.125       1.94n.s.     0.0059      0.047    1.028  
BARS       0.1889   0.058       3.28**      0.0024      0.041   1.008  
AREA   -0.0548   0.033     -1.68n.s.     0.0018      0.055  1.041  
-----------------------------------------------------------------------------------------------------------------------------
n.s.  Not significant 
**    p≤.01 
***  p≤.001 

 



17.35 

Table 17.7: 

Number of Drivers Involved in DWI Crashes  
Living in Baltimore County: 1999-2001 

MCMC Poisson-Gamma Model with 90,000 Iterations 
(N= 532 Traffic Analysis Zones) 

 
 DepVar:                             Annual Number of Drivers in  DWI Crashes Living in TAZ   
 N:                                    532 
 Type of regression model:           Poisson with Gamma dispersion 
 Method of estimation:   MCMC 
 Total number of iterations:          100,000  Burn in: 10,000 
 
  Likelihood statistics 
 Log Likelihood:                      -278.6 
 AIC:                                 573.2 
 BIC/SC:                              607.4 
 Deviance:    317.9  p:  0.0001 
 Pearson Chi-square:   479.5  p:  0.0001 
 Model error estimates 
 Mean absolute deviation:            0.32 
 Mean squared predicted error:       0.25 
 Dispersion tests 
 Adjusted deviance:                   0.61 p:  n.s. 
 Adjusted Pearson Chi-Square:        0.92 p:  n.s. 
 Dispersion multiplier:                0.14 p:  n.s.  Inverse dispersion multiplier:  7.36 
 
          MC error/ 
Predictor  Mean  Std    t-valuep MC error std           G-R stat 
------------------------------------------------------------------------------------------------------------------------------ 
INTERCEPT -4.6608   0.425  -10.96***    0.0222    0.052  1.085  
POPULATION 0.0004   0.00005   8.78***    0.000002   0.041     1.041  
PERCENT 
  WHITE   0.0243    0.004      5.77***      0.0002      0.050   1.081 
RURAL   0.6378      0.324      1.97*       0.0092      0.028   1.005  
LIQUOR 
STORES    0.2431     0.123      1.98*      0.0033      0.027    1.002  
BARS     0.1859    0.055      3.36***      0.0011      0.020   1.004  
AREA   -0.0515   0.032     -1.63n.s.     0.0009      0.029  1.008  
------------------------------------------------------------------------------------------------------------------------------ 
n.s. Not significant 
*    p≤.05 
***  p≤.001 
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statistics.  However, the convergence statistics indicate that the model with 90,000 iterations had 
better convergence than that with only 20,000.  Of the parameters, none had a G-R value greater 
than 1.2 while only one had an MC Error/Standard error value greater than 0.05, and that only 
slightly.   

 
This had an effect on both the coefficients and the significance levels.  The coefficients 

were in the same direction for both models but were slightly different.  Further, the standard 
deviations were generally smaller with more iterations and only one of the independent variables 
was not significant (area, which was a control variable).   
 
 In other words, increasing the number of burn-in samples as well as the number of 
iterations run improved the model.  It apparently converged for the second run whereas it had not 
for the first run. The algorithm did this for two reasons.  First, by taking a larger number of 
iterations, the model was more precise.  Second, by dropping more initial iterations during the 
‘burn in’ phase (10,000 compared to 5,000), the series apparently reached an equilibrium state 
before the sample iterations were calculated.  The smaller standard errors suggest that there still 
was a trend when only 5,000 were dropped but had ceased by the time the first 10,000 iterations 
had been reached. 
 
 The point to remember is that one wants a stable series before drawing a sample.  If in 
doubt, run more during the ‘burn in’ phase.  This increases the calculating time, of course, but 
the results will be more reliable.  Once the MCMC algorithm has reached ‘equilibrium’, it won’t 
take that many additional samples to produce good estimates.  We have estimated that 5,000-
10,000 additional samples beyond the ‘burn-in’ sample will produce good results.  One can 
implement this in stages.  For example, run the model with the default 25,000 iterations with 
5,000 for the ‘burn in’ (for a total of 20,000 sample iterations from which to base the 
conclusions).  If the convergence statistics suggest that the series has not yet stabilized, run the 
model again with more ‘burn in’ samples and, perhaps, more sample iterations.   
 
  Monitoring Convergence 

 A second concern is how to monitor convergence.  There appear to be two different 
approaches.  One is a graphical approach whereby a plot of the parameter values is made against 
the number of iterations (often called trace plots).  If the chain has converged, then there should 
be no visible trend in the data (i.e., the series should be flat).  The WinBugs software package 
uses this approach, in addition to the MC Error and G-R statistics (BUGS, 2008).  For the time 
being, we have not included a graphical plot of the parameters in this version of CrimeStat 
because of the difficulties in using this plot with the block sampling approach to be discussed 
shortly.   
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 Also, graphical visualizations, while useful for informing readers, can be misinterpreted.  
A series that appears to be stable, such as the Baltimore County DWI crash example given 
above, may actually have a subtle trend.  A series can look stable and yet summary statistics such 
as the G-R statistic and the MC Error relative to the standard error statistic do not indicate 
convergence.    

 
 On the other hand, summary convergence statistics, such as these two measures, are not 
completely reliable indicators either since a series may only temporarily be stable.  This would 
be especially true for a simulation with a limited number of runs.  Both the G-R and MC Error 
statistics require that at least 2500 iterations be run, with more being desirable. Further, these 
statistics are not without controversy. Flegal, Haran, & Jones (2008) argue that MCMC standard 
errors are needed to allow assessment of the accuracy of the estimate while Gelman (2007), in 
responding to their concerns, argues that a simulation need only be run sufficiently long so that 
the estimate is more accurate than its standard error.  In other words, the precision defines the 
number of runs needed once the sequence has achieved equilibrium.   
 

Some authors argue that one needs multiple approaches for monitoring convergence 
(Carlin and Louis, 2000, 182-183).  While we would agree with this approach, for the time being 
we are utilizing primarily the convergence statistics approach.   

 
 Statistically Testing Parameters 
 
 With an MCMC model, there are two ways that statistical significance can be tested.  The 
first is by assuming that the sampling errors of the algorithm approximate a normal distribution.  
Thereby, the t-test would be appropriate.  In the output table, the t-value is shown, which is the 
coefficient divided by the standard error.  With a simple model, a dependent variable with higher 
means and adequate sample, this might be a reasonable assumption for a regular Poisson or 
Poisson-Gamma function.  However, for models with many variables and with low sample 
means, such an assumption is probably not valid (Lord & Miranda-Moreno, 2008).  Further, with 
the addition of many predictor parameters added, the assumption becomes more questionable. 
 
 Consequently, MCMC models tend to be tested by looking at the sampling distribution of 
the parameter and calculating approximate 95% and 99% credible intervals based on the 
percentile distribution, as illustrated above in Table 17.4. 
 
  Proper Specification of a Model 
 
 But statistical testing does not just involve testing the significance of the coefficients, 
whether by asymptotic t- or Z-tests or by percentiles.  A key issue is whether a model is properly 
specified.  On the one hand, a model can be incomplete since there are other variables that could 
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predict the dependent variable.  The Houston burglary model is clearly underspecified since there 
are additional factors that account for burglaries, as we suggested above. 
 
 But, there is also the problem of overspecifying a model, that is, including too many 
independent variables.  While the algorithms – MLE or MCMC, can fit virtually any model that 
is defined, logically many of these models should have never been tested in the first place. 
 
  Multicollinearity 
 
 The phenomenon of multicollinearity among independent variables is well known, and 
most statistical texts discuss this.  In chapter 15, we briefly discussed multicollinearity among the 
independent variables.  Now, we will show why multicollinearity can be a problem. 
 
 In theory, each independent variable should be statistically independent of the other 
independent variables.  Thus, the amount of variance for the dependent variable that is accounted 
for by each independent variable should be a unique contribution.  In practice, however, it is rare 
to obtain completely independent predictive variables.  More likely, two or more of the 
independent variables will be correlated.  The effect is that the estimated standard error of a 
predictor variable is no longer unique since it shares some of the variance with other independent 
variables. If two variables are highly correlated, it is not clear what contribution each makes 
towards predicting the dependent variable.  In effect, multicollinearity means that variables are 
measuring the same thing. 
 
 Multicollinearity among the independent variables can produce very strange effects in a 
regression model.  Among these effects are: 1) if two independent variables are highly 
correlated, but one is more correlated with the dependent variable than the other, the stronger one 
will usually have a correct sign while the weaker one will sometimes get flipped around (e.g., 
from positive to negative, or the reverse); 2) two variables can cancel each other out; each 
coefficient is significant when it alone is included in a model but neither are significant when 
they are together; 3) one independent variable can inhibit the effect of another correlated 
independent variable so that the second variable is not significant when combined with the first 
one; and 4) if two independent variables are virtually perfectly correlated, many regression 
routines break down because the matrix cannot be inverted. All these effects indicate that there is 
non-independence among the independent variables.   
 

Aside from producing confusing coefficients, multicollinearity can overstate the 
predictability of a model. Since every independent variable accounts for some of the variance of 
the dependent variable, multicollinearity can cause the overall model to ‘improve’ when it 
probably has not.   
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A good example of this is a model that we ran relating the number of 1996 crime trips 
that originated in each of 532 traffic analysis zones in Baltimore County and the City of 
Baltimore that culminated in a crime committed in Baltimore County.   The dependent variable 
was, therefore, the number of 1996 crimes originating in the zone while there were six 
independent variables: 
 

1. Population of the zone (1996) 
2. An index of relative median household income of the zone (relative to the zone with 

the highest income) 
3. Retail employment in the zone (1996) 
4. Non-retail employment in the zone (1996) 
5. The number of miles of the Baltimore Beltway (I-695) that passed through the zone 
6. Dummy variable indicating whether the Baltimore Beltway passed through the zone. 

 
The last two variables are clearly highly correlated. If a zone has the Baltimore Beltway 

passing through it, then it has some miles of that freeway assigned to it.  The simple Pearson 
correlation between the two variables is 0.71.   Logically, one should not include highly 
correlated variables in a model.  But, what happens if we do this?  Table 17.8 illustrates what can 
happen.  Only the coefficients are shown.  In the first model, the Beltway miles variable was 
used along with population, income, retail employment and non-retail employment.  In the 
second model, the dummy variable for whether the Baltimore Beltway passed through the zone 
or not was used with the four other independent variables.  In the third model, both the Beltway 
miles and the dummy variable for the Baltimore Beltway were both included along with the four 
other independent variables. 
 
 The coefficients for the intercept and the four other independent variables are very 
similar (and sometimes identical) across the three models. So, look at the two correlated 
variables. In the first model, the Beltway miles variable is positive, but not significant.  In the 
second model, the Beltway dummy variable is positive and significant.  In the third model, 
however, when both Beltway variables were included, the Beltway miles variable has become 
negative while the Beltway dummy variable remains positive and significant. 

 
In other words, including two highly correlated variables has caused illogical results.  

That is, without realizing that the two variables are, essentially, measuring the same thing, one 
might conclude that the effect of the Beltway passing through a zone is to increase the likelihood 
that offenders live in that zone but that the effect of having Beltway miles in the zone decreases 
the likelihood!  Any such conclusion is nonsense, of course.  In short, do not include highly 
correlated variables in the same model. 
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Table 17.8: 

Effects of Multicollinearity on Estimation 
MLE Poisson-Gamma Model 

(N= 532 Traffic Analysis Zones in Baltimore County) 
 
Dependent variable: Number of 1996 crimes that originated in a zone 
 

(1)                                    (2)   (3) 
 Independent  
 Variables  Model 1    Model 2  Model 3 

 
Intercept   1.6437***   1.5932***   1.5964***  
Population   0.00045***   0.00045***   0.00045*** 
Relative 
Income  -0.0184***  -0.0188***  -0.0188*** 
Retail 
Employment  -0.00024*  -0.00026*  -0.00026* 
Non-retail 
Employment  -0.0001***  -0.00013***  -0.00013*** 
Beltway miles   0.1864n.s.        ---   -0.0397n.s. 
Beltway        ---    0.3194*   0.3496* 
-------------------------------------------------------------------------------------------------- 
n.s. Not significant 
*   p≤.05 
*** p≤.001 

 
 
How do we know if two or more variables are correlated?   There is a simple tolerance 

test that is included in the MLE models and in the diagnostics utility for the regression module.  
Tolerance is defined as (repeating equation 15.18, from Chapter 15) 

 
 Toli = 1 – R2

j≠i        (17.32) 
 
where R2

j≠i is the R-square associated with the prediction of one independent variable with the 
remaining independent variables in the model.  In the example, the tolerance of both the Beltway 
miles variable and the Beltway dummy variable was 0.49 whereas when each were in the 
equation by themselves (models 1 and 2), the tolerance was 0.97.   The tolerance test should be 
the first indicator in suspecting too much overlap in two or more independent variables. 
 

The tolerance test is a simple one and is based on normal (OLS) regression. 
Consequently, it may be erroneous when one or more of the independent variables are highly 
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skewed.  Nevertheless, it is a good indicator of potential problems.  When the tolerance of a 
variable is low, then the variable should be excluded from the model.  Typically, when this 
happens two or more variables will show a low tolerance and the user can choose which one to 
remove. 
 
 How ‘low’ is low?  There is no simple answer to this, but variables with reasonably high 
tolerance values can have substantial multicollinearity.  For example, if there are only two 
independent variables in a model and they are correlated 0.3, then the tolerance score is 0.91 
(100 – 0.32). While 0.91 appears high, in fact it indicates that there is 9% of overlap between the 
two variables.  CrimeStat prints out a warning message about the degree of multicollinearity 
based on the tolerance levels.  But, the user needs to understand that overlapping independent 
variables can lead to ambiguous and unreliable results.  The aim should be to have truly 
independent variables in a model since the results are more likely to be reliable over time.  
 
  Stepwise Variable Entry to Control Multicollinearity 
 

One solution to limiting the number of variables in a model is to use a stepwise fitting 
procedure.  There are three standard stepwise procedures (Der & Everitt, 2002, 88-89).  In the 
first procedure, variables are added one at a time (a forward selection model).  The independent 
variable having the strongest linear correlation with the dependent variable is added first.  Next, 
the independent variable from the remaining list of independent variables having the highest 
correlation with the dependent variable controlling for the one variable already in the equation is 
added and the model is re-estimated.  In each step, the independent variable remaining from the 
list having the highest correlation with the dependent variable controlling for the variables 
already in the equation is added to the model, and the model is re-estimated.  This proceeds until 
either all the independent variables are added to the equation or else a stopping criterion is met.  
The usual criterion is only variables with a certain significance level are allowed to enter (called 
a p-to-enter). 
 
 Second, a backward elimination procedure works in reverse.  All independent variables 
are initially added to the equation.  The variable with the weakest coefficient (as defined by the 
significance level and the t- or Z-test) is removed, and the model is re-estimated.  Next, the 
variable with the weakest coefficient in the second model is removed, and the model is re-
estimated.  This procedure is repeated until either there are no more independent variables left in 
the model or else a stopping criterion is met.  The usual criterion is that all remaining variables 
pass a certain significance level (called a p-to-remove).  This ensures that all variables in the 
model pass this significance level. 
 
 The third method is a combination of these procedures, first adding a variable in a 
forward selection manner but second removing any variables that are no longer significant or 
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using a backward elimination procedure but allowing new variables to enter the model if they 
suddenly become significant. 
 
 There are advantages to each approach.  A fixed model allows specified variables to be 
included.  If either theory or previous research has indicated that a particular combination of 
variables is important, then the fixed model allows that to be tested.  A stepwise procedure might 
drop one of those variables.  On the other hand, a stepwise procedure usually can obtain the same 
or higher predictability than a fixed procedure.   
 
 Within the stepwise procedures, there are also advantages and disadvantages to each 
method, though the differences are generally very small. A forward selection procedure adds 
variables one at a time.  Thus, the contribution of each new variable can be seen.  On the other 
hand, a variable that is significant at an early stage could become insignificant at a later stage 
because of the unique combinations of variables.  Similarly, a backward elimination procedure 
will ensure that all variables in the equation meet a specified significance level.  But, the 
contribution of each variable is not easily seen other than through the coefficients.  In practice, 
one usually obtains the same model with either procedure, so the differences are not that critical. 
         
 A stepwise procedure will not guarantee that multicollinearity will be removed entirely.  
However, it is a good procedure for narrowing down the variables to those that are significant.  
Then, any co-linear variables can be dropped manually and the model re-estimated.  

 
In the normal and MLE Poisson routines, there is a backward elimination procedure 

whereby variables are dropped from an equation if their coefficients are not significant.   
 
  Overfitting 
 

Overfitting is a more general phenomenon of including too many variables in an equation 
(Radford, 2006; Nannen, 2003).  With the development of Bayesian models, this has become an 
increasing occurrence because the models, usually estimated with the MCMC algorithm, can fit 
an enormous number of parameters. Many of these models estimate parameters that are 
properties of the functions used (called hyperparameters) rather than just the variables input as 
part of the data.  In the Poisson-Gamma-CAR model, for example, we estimate the dispersion 
parameter (ψ) and a general Φ function.  Phi (Φ), in turn, is a function of a global component 
(Rho, ρ), a local component (Tauphi τΦ), and a neighborhood component (Alpha -α). 

 
These parameters are part of the functions and are not data.  But, since they can vary and 

are often estimated from the data, there is always the potential that they could be highly 
correlated and, thereby, cause ambiguous results to occur.  Unfortunately, there are not good 
diagnostics for multicollinearity among the hyperparameters, as there is with the tolerance test.   
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But, the problem is a real one and one that the user should be cognizant.  Sometimes an 
MCMC or MLE model fails to converge properly, meaning that it either did not finish or else 
produced inconsistent results from one run to another.  We usually assume that the probability 
structure of the space being modeled is too complex for the model that we are using.  And, while 
that may be true, it is also possible that there is overlap in some of the hyperparameters.  In this 
case, one would be better off choosing a simpler model – one with fewer hyperparameters, than a 
more complex one. 

 
  Condition Number of Matrix 

 
In other words, a user should be very cautious about overfitting models with too many 

variables, both the data variables and those estimated from functions (the hyperparameters).  We 
have included a condition matrix test for the distance matrix in the Poisson-Gamma-CAR/SAR 
model.  The condition number of a matrix is an indicator of how amenable it is to digital solution 
(Wikipedia, 2010b).  A matrix with a low condition number is said to be well conditioned 
whereas one with a high number is said to be ill-conditioned.  With ill-conditioned matrices, the 
solutions are volatile and inconsistent from one run to another.   How ‘high’ is high?  Numbers 
higher than, say, 400 are generally ill-conditioned while low condition numbers (say, under 100) 
are well conditioned.  Between 100 and 400 is an ambiguous area.  For the Poisson-Gamma-
CAR model, if you see a condition number higher than 100, be cautious.  If you see one higher 
than 400, assume the results are completely unreliable with respect to the spatial component. 
 
  Overfitting and Poor Prediction 
 
 There is also a question about the extent to which a model that is fit is reliable and 
accurate for predicting a data set which is different.  Without going into an extensive literature 
review, a few guidelines can be given.  The Machine Learning computing community 
concentrates on training samples in order to estimate parameters and then using the estimated 
models to predict a test sample (another data set).  In general, they have found that simple 
models do better for prediction than complicated models.  One can always fit a particular data set 
by adding variables or adding complexity to the mathematical function.  On the other hand, the 
more complex the model – the more independent variables in it and the more specified 
hyperparameters, generally the model will do worse when applied to a new data set.  Nannen 
(2003) called this the paradox of overfitting, and it is a rule that a user would be well advised to 
follow.  Try to keep your models simple and reliable.  In the long run, simple models with well-
defined independent variables will generally do better for prediction. 
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Improving the Performance of the MCMC Algorithm 
 
 Most medium- and large police departments use large datasets, such as calls for service, 
crime reports, motor vehicle crash reports and other data sets.  The largest police departments 
have huge data sets, constituting millions of records.  Further, these data are being collected on a 
continual basis. CrimeStat was developed to handle fairly large data sets and the routines are 
optimized for this.   
 

However, large data sets pose a problem for multivariate modeling in a number of ways.  
First, they pose a computing problem in terms of the processing of information. As the number 
of records goes up, the demand for computer resources increases exponentially.  For example, 
consider the problem of calculating a distance matrix for use in, say, the Poisson-Gamma-SAR 
model.  If each number is represented by 64 bits (double precision), then the amount of memory 
space required is a function of K2*64 where K is the number of records.  For example, if there 
are 10,000 records (a relatively small database by police standards), then the amount of memory 
required will be 10,000*10,000*64 = 6.4 billion bits (or 800 Mb).  On the other hand, if the 
number of records is 100,000, then the memory demand goes up to 80,000 Mb (or 80 Gb).  That 
such databases take a long time to be analyzed is understandable. 
 
 Second, large data sets pose problems for interpretation.  The ‘gold standard’ for testing 
of coefficients or even the overall fit of a model has been to compare the coefficients to 0.  This 
follows from traditional statistics (whom the Bayesians call frequentists) whereby a particular 
statistic (in this case, a regression coefficient) is compared to a ‘null hypothesis’ which is usually 
0.  However, with large datasets, especially with extremely large datasets, virtually all 
coefficients will be significantly different from 0, no matter how they are tested (with t-tests or 
with percentiles).  In this case, ‘significance’ does not necessarily mean ‘importance’.  For 
example, if you have a data set of one million records and plug in a model with 10 independent 
variables, the chances are that the majority of the variables will be significantly different than 0. 
This does not mean that the variables are important in any way, only that they account for some 
of the variance of the dependent variable greater than what would be expected on the basis of 
chance.   
 
 The two problems interact when a user works with a very large dataset.  The routines 
may have difficulty calculating the solution and the results may not necessarily be very 
meaningful.  This will be particularly true for complex models, such as the Poisson-Gamma-
CAR which will be discussed in chapter 19.  An example will illustrate this. With an Intel 2.4 
Ghz computer with a dual core, we ran a model with three independent variables on a scalable 
dataset; that is, we took a large dataset and sampled smaller subsets of it.  We then tested the 
MCMC Poisson-Gamma and MCMC Poisson-Gamma-CAR models with subsets of different 
size. Table 17.9 present the results. 
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As can be seen, the calculation time went up exponentially with the sample size.  Further, 
with the spatial Poisson-Gamma-CAR model, a limit was reached.  Because the routine was 
calculating the distance between each observation and every other observation as part of the 
spatial weight coefficients, the memory demands blow up very quickly. The non-spatial Poisson-
Gamma model can be run on larger datasets (we have run them on sets as large as 100,000 
records) but the spatial model cannot be.  Even with the non-spatial model, the calculation time 
for a very large dataset goes up very substantially with the sample size. 

 
Table 17.9: 

Effects of Sample Size on Calculations 
(Second to Complete) 

 
 Sample size  Poisson-Gamma  Poisson-Gamma-CAR 
       125         23           67 
      250         43         163 
      500         81         480 
   1,000       160      1,569 
   2,000       305      6,000 
   4,000       622    25,740 
   5,000       762    43,740 
   8,000    1,247    Unable to complete 
 12,000    1,869    Unable to complete 
 15,000    2,412    Unable to complete 
 20,000    3,278    Unable to complete 
 
 
 Scaling of the Data 
 
 There are several things that can be done to improve the performance of the MCMC 
algorithm with large datasets.  The first is to scale the data, either by reducing the number of 
digits that represent each value or by standardizing by Z-scores.  There are different ways to 
scale the data, but a simple one is to move the decimal places.  For example, if one of the 
variables is median household income and is measured in tens of thousands (e.g., 55,000, 
135,000), then these values can be divided by 1000 so that they represent ‘per 1000’ (i.e., 55.0 
and 135.0 in the example). 
 
 To illustrate, we ran a single-family housing value model on a large data set of 588,297 
single-family home parcels. The data came from the Harris County Appraisal District and the 
model related the 2007 assessed value against the square feet of the home, the square feet of the 
parcel, the distance from downtown Houston and two dummy variables - whether the home had 
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received a major remodeling between 1985 and 2007 and whether the parcel was within 200 feet 
of a freeway.  The valuations were coded as true dollars and were then re-scaled into units of 
‘per 1000’ (e.g., 45,000 became 45.0).   When the data were in real units, the time to complete 
the run was 20.8 minutes for the MCMC Poisson-Gamma using the Block Sampling Method (see 
below).  When the data were in units of thousandths, the time to complete the run was 15.3 
minutes for the MCMC Poisson-Gamma.  
 
 In other words, scaling the data by reducing the number of decimal places led to an 
improvement in calculating time of around 25% for the MCMC model.  The effects on an MLE 
model will be even more powerful due to the different algorithm used.  The point is, scaling your 
data will pay in terms of improving the efficiency of runs. 
 
 Block Sampling Method for the MCMC 
 
 Another solution is to sample records from the full database and run the MCMC 
algorithm on that sample. In the MCMC literature, drawing a sub-sample is called ‘thinning’ the 
sample (Link & Eaton, 2011).  Essentially, a sub-sample is drawn and the MCMC algorithm is 
run. It is clearly much faster to run a sub-sample than the entire database.  However, the problem 
with this approach, as pointed out by McEachern & Berliner (1994) is that it will be less precise 
than by running the full database.  The reason is that there is sampling error and that the results 
from any one sub-sample might deviate from the full database. 
 
 With the block sampling method, on the other hand, multiple subsamples are drawn with 
the overall statistics based on a summary of the individual samples.  That is, a first sub-sample is 
drawn and run through the MCMC algorithm.  The statistics from the run are calculated.  Then, 
the process is repeated with another sample, and the statistics are calculated on this sample.  
Then, the process is repeated again and again.  We call this the block sampling method and it has 
been implemented in CrimeStat.  The advantage over a thinned sample is that, because of the 
Central Limit Theorem, the summary statistics for the repeated samples will converge towards 
the summary statistics of the full database with much smaller sampling error.  
 
 With the block sampling method, the user defines three parameters for controlling the 
sampling: 
 

1. The block sampling threshold – the size of the database beyond which the block 
sampling method will be implemented.  For example, the default block sampling 
threshold is set at 6,000 observations, though the user can change this.  With this 
default, any dataset that has fewer than 6,000 records/observations will be analyzed 
with the full database.  However, any dataset that has 6,000 records or more will 
cause the block sampling routine to be implemented. Note that the user run the entire 
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dataset, no matter how long it takes, by setting the block sampling threshold to be 
greater than the number of records in the dataset. 
 

2. Average block size – the expected block size of a sample from the block sampling 
method.  The default is 400 records thought the user can change this. The routine 
defines a sampling interval, based on n/N where n is the defined average block size 
and N is the total number of records.  For drawing a sample, however, a uniform 
random number from 0 to 1 is drawn and compared to the ratio of n/N.  If the number 
is equal to or less than this ratio (probability), then the record is accepted for the 
block sample; if the number is greater than this ratio, the record is not accepted for 
the block sample. Thus, any one sample may not have exactly the number of records 
defined by the user.  But, on average, the average sample size over all runs will be 
very close to the defined average block size though the variability is high. 

 
3. Number of samples – the number of samples drawn.  The default is 25 though the 

user can change this.  We have found that 20-30 samples produce very reasonable 
results. 

 
The routine then proceeds to implement the block sampling method. For example, if the 

user keeps the default parameters, then the block sampling method will only be implemented for 
databases of 6,000 records or more.  If the database passes the threshold, then each of the 25 
samples are drawn with, approximately, 400 records per sample.  The MCMC algorithm is run 
on each of the samples and the statistics are calculated.  After all 25 samples have been run, the 
routine summarizes the results by averaging the summary statistics (likelihood, AIC, BIC/SC, 
etc), the coefficients, the standard errors, and the percentile distribution.  The results that are 
printed represent the average over all 25 samples. 

 
 
 
 
 
 
 
 
 
 
 
 

 

GUIDELINE: 

Note that MCMC models can take a very long time to calculate.  
For large datasets, we recommend using the block sampling 
method.  A rough rule-of-thumb is that for non-spatial MCMC 
models, the block sampling method should be used for 6,000 or 
more cases while for spatial MCMC models, the block sampling 
method should be used for 2,000 or more cases.  Of course, this will 
depend on the amount of available RAM as well as the processing 
speed of the computer. 
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We have found that this method produces very good approximations to the full database. 
For several datasets, we have compared the results of the block sampling method with running 
the full database through the MCMC routine.  The means of the coefficients appear to be 
unbiased estimates of the coefficients for the full database.  Similarly, the percentiles appear to 
be very close, if not unbiased, estimates of the percentiles for the full database.  On the other 
hand, the standard errors appear to be biased estimates of standard errors of the full database. 

 
The reason is that they are calculated from a sample of n observations where the standard 

errors of the full database are calculated from N observations. An adjusted standard error is 
produced which approximates the true standard error of the full database.  It is defined as; 
 

 
N

n
StdErrErrAdjStd block



 *.        (17.33) 

 
where StdErrblock is the average standard error from the k samples, N is the total number of 

records, and 


n is the average block size (the empirical average, not the expected sample size).  
This is only output when the block sampling method is used. 
 
 Comparison of Block Sampling Method with Full Dataset 
 
  Test 1 
 
 A test was constructed to compare the block sampling method with the full MCMC 
method on two datasets.  The first dataset contained 4000 road segments in the Houston 
metropolitan area and the model that was run was a traffic model relating vehicle miles traveled 
(VMT - the dependent variable) against the number of lanes, the number of lane miles, and the 
volume-to-capacity ratio of the segment.  It is not a very meaningful model but was used to test 
the algorithm.   
 

The dataset was tested with the MCMC model using all records (the full dataset) and the 
block sampling method.  For simplicity, the variables have been called X1…Xk.  The 
significance levels of the coefficients for the full dataset based on the t-test are shown, since 
these are based on the estimated standard errors rather than the adjusted standard errors. 
 

Table 17.10 shows the results of the traffic dataset.  Comparing the full sample results 
with the block sample results, the coefficients are very close to each other, within the second 
decimal place.  Similarly, the adjusted standard errors are very close within the third decimal 
place. On the other hand, the block sampling method took 11.2 minutes to run compared to only  
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Table 17.10: 

Comparing Block Sampling Method with Full Database 
MCMC Poisson-Gamma Model 

Houston Traffic Dataset 
(Time to Complete) 

 
Dependent variable = Vehicle Miles Traveled  

 
    Full dataset   Block Sampling method 
    (N=4000)   (n = 402.9) 
Iterations:   20,000    20,000 
Burn in:    5,000     5,000 
Number of samples:  1    20 
Time to 
 complete run:  7.7 minutes   11.2 minutes 
 
           Adj. 
     Std.      Std.  Std. 
Variable  Coefficient Error  Coefficient   Error Error 

 Intercept    4.5414*** 0.045  4.5498***   0.140  0.044 
 X1     0.6254*** 0.022  0.6267***   0.066  0.021 
 X2     0.8502*** 0.020  0.8618***   0.064  0.020 
 X3     2.4163*** 0.049  2.3938***   0.154  0.049 

_______________________________________________________________________ 
Significance of block sampling method based on unadjusted standard error 
***  p≤.001 

 
 
7.7 for the full dataset.  With a dataset of this size (N=4000), there was no advantage for the 
block sampling method even though it produced very similar results. 

 
Now, let’s take a more complicated dataset.  The second represented 97,429 crimes 

committed in Manchester, England. It is part of a study on gender differences in crime travel 
(Levine & Lee, 2012).  The model related the journey to crime distance against 14 independent  
variables involving spatial location, land use, type of crime, ethnicity of the offender, prior 
conviction history, and gender.   
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 Test 2 
 

 Table 17.11 shows the results of the journey to crime dataset. Not all of the variables 
were significant, according to the t-test of the full dataset.  In this case, there were greater 
discrepancies in the coefficients between the full dataset and the block sampling method.  The 
signs of the coefficients were identical for all parameters except X10, which was not significant.  
For all parameters, though, the coefficient for the full dataset was within the 95% credible 
interval of the block sampling method.  That is, since this is a sample, the sampling error of the 
block sampling method incorporates the coefficient for the full dataset for all 16 parameters.   
 

The adjusted standard errors from the block sampling method were quite close to the 
standard errors of the full dataset; the biggest discrepancy was 0.004 for variable X6 and is about 
15% larger.  Most of the adjusted standard errors are within 10% of the standard error for the full 
dataset, and three are exactly the same. Further, where there is a discrepancy, the adjusted 
standard errors were slightly larger, suggesting that this is a conservative adjustment.  
 
 In short, the block sampling method produced reasonably close results to that of the full 
dataset for both the coefficients and the standard errors.  Given that this model was a very 
complex one (with 14 independent variables), the fit was good.  The biggest advantage of the 
block sampling method, on the other hand, is the efficiency of it.  The block sampling method 
took 222.7 minutes to run compared to 4,855.1 minutes for the full dataset, an improvement of 
more than 20 times!  Running a large dataset through the MCMC algorithm is a very time 
consuming process.  The block sampling approach produced reasonably close results in a much 
shorter period of time.  
 
  Statistical Testing with Block Sampling Method 
 
 Regarding statistical testing of the coefficients, however, we think that the modeled 
standard errors (or percentiles) be used rather than the adjusted errors.  The adjusted standard 
error is an approximation to the full dataset if that dataset had been run.  In most cases, it will not 
have been run. On the other hand, the standard errors estimated from the block sampling method 
and the percentile distribution were the products of running the individual samples.  The errors 
are larger because the samples were much smaller.  But, because this was the method used, 
statistical inferences should be based on the sample. 
 
 What to do if there is a discrepancy?  For some datasets, the coefficients from the block 
sampling method will not be significant whereas they would be if the full dataset was run.  In the 
Manchester example above, only 3 of the coefficients were significant using the block sampling 
method compared to 14 for the full dataset.  This brings up a statistical dilemma.  Does one adopt 
the adjusted standard errors and then re-test the coefficients using the asymptotic t-test or does  
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Table 17.11: 

Comparing Block Sampling Method with Full Database 
MCMC Poisson-Gamma Model 

Manchester Journey to Crime Dataset 
(Time to Complete) 

 
Dependent variable = Distance traveled 

 
    Full dataset   Block Sampling method 
    (N = 97,429)   (n=402.8) 
Iterations:   100,000   100,000 
Burn in:   10,000    10,000 
Number of samples:  1    30 
Time to complete:  4,855.1 minutes  222.7 minutes 
           Adj. 
     Std.      Std.  Std. 
Variable  Coefficient Error  Coefficient   Error Error 

 Intercept   0.2096*** 0.018   0.2103   0.321  0.021 
 X1    0.8871*** 0.025   1.0135*   0.430  0.028  
 X2    0.3311*** 0.018   0.3434   0.294  0.019 
 X3   -0.2274*** 0.012  -0.2751   0.199  0.013 
 X4   -0.2820*** 0.014  -0.3137   0.231  0.015 
 X5    0.2525*** 0.016   0.3099   0.256  0.016 
 X6    0.3560*** 0.027   0.3783   0.488  0.031 
 X7    0.0753*** 0.013   0.1092   0.214  0.014 

X8    0.1766*** 0.021  -0.0030   0.374  0.024 
X9    0.1880*** 0.023   0.1326   0.406  0.026 

 X10    0.0135n.s. 0.016  -0.0070   0.268  0.017 
 X11   -0.5697*** 0.016  -0.6759   0.265  0.017
 X12    0.0042n.s. 0.014   0.0521   0.226  0.015 
 X13   -0.2214*** 0.016  -0.2755   0.262  0.017 
 X14    0.0056*** 0.001  -0.00004   0.016  0.001 
 Error   -0.7299*** 0.008  -0.7062***   0.139  0.009 

____________ 
Based on asymptotic t-test: 
n.s.  Not significant 
*    p≤.05 
***  p≤.001 
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one accept the estimated standard errors and the percentiles?  Our opinion is to do the latter.  The 
former is making an assumption (and a big one) that the adjusted standard errors will be a good 
approximation to the real ones.  In these two datasets, this appears to be the case.  But, we have 
no theoretical basis for assuming that.  It has just worked out for these and a couple of other 
datasets that we have tested. 
 

Therefore, the choice for a researcher is to do one of three things if some of the 
coefficients are not significant using the block sampling method when it appears that they might 
be if the full dataset would be used.   

 
First, one could always run the full dataset through the MCMC algorithm.  If the dataset 

is large, then it will take a long time to calculate.  But, if it is important, then the user should do 
that.  Note that it will be possible to do this only for the Poisson-Gamma model and not for the 
Poisson-Gamma-CAR/SAR spatial model. 
 
 Second, the researcher could try to tweak the MCMC algorithm to increase the likelihood 
of finding statistical significance for the coefficients increasing the number of iterations to 
improve the precision of the estimate and by increasing the average sample size of the block 
sample.  If 400 samples were not sufficient, perhaps 600 would be?  In doing this, the efficiency 
advantage of the block sampling method becomes less important compared to improving the 
accuracy of the estimates.   
 
 Third, the researcher can accept the results of the block sampling method and ‘live’ with 
the conclusions.   If one or more variables was not significant using the block sampling method 
(which, after all, was based on 20 to 30 samples of around 400 records each), then the variables 
are probably not important. In other words, running the MCMC algorithm on the full dataset or 
increasing the sample size of the block samples may find statistical significance in one or more 
variables.  But, the chances are that the variables are not very important, from a statistical 
perspective.   
 
 In our experience, the strongest variables are significant with the block sampling scheme.  
Perhaps the researcher or analyst should focus on those and build a model around them, rather 
than scouring for other variables that have very small effect?  In short, our opinion is that a 
smaller, but more robust, model is better than a larger, more volatile one.  In terms of 
understanding, the major variables need to be isolated because they contribute the most to the 
development of theory.  In terms of prediction, the strongest variables will also have the biggest 
impact.  Elegance in a model should be the aim, not a comprehensive list of variables that might 
be important but probably are not. 
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